Singapore Journal of Pharmaceutical Research

Journal homepage: www.mcmed.us/journal/sjpr

SYNTHESIS & IDENTIFICATION OF BIS-(AZ-COMPOUNDS) VIA ALKYLATION OF DIMETHYL MALONATE

*Rajaa Abed and Alameer Gafel

Department of Chemistry, Education College, Kufa University, Iraq.

Article Info	ABSTRACT
Received 25/11/2013 Revised 15/12/2013 Accepted 18/12/2013	In this paper, dimethyl malonate has been used to the reaction with P -formal benzaldehyde forming the corresponding bis(Dimethyl malonate) which ciclyze with di amine compounds to produce bis $\{(5, 6, 7) - membered of di aze cycles\}$, & some of them reacts with different
Key words: Di az, Di cycle, Di alkyl malonate.	amino compounds to produce corresponding bis substituted. The structures of the synthesized compounds have been confirmed by (FT.IR - spectra, H.NMR -spectra, C.H.N - analysis) & melting points.

INTRODUCTION

Di alkyl malonate is important class of compounds is several field of organic chemistry such as alkylation of carbonyl 1, 2 compounds, incorporation with heterocyclic compounds to produce pharmaceutical compounds which have a wide range of pharmacological properties 3-5in pharmaceutical chemistry field, because of the number & the significance of these applications, many methods 6, 7 have been reported for the preparation of these compounds in the last years (diazolidine, diazine, diazepan) 8-11. Di nitrogen (di az)-containing heterocyclic compounds 12, 13 have received considerable attention due to their biological activity which represented as anti tumer, anti viral, anti fungal, anti cancer, analagesic, anti-Hiv, anti microbial etc. In recent years, chemistry of di az compounds developed very fast due to the discovery of the diverse biologically active (diazolidine, diazine, diazepan) derivatives 14, 15 [1].

EXPERIMENTAL

All chemical used from BDH & sigma -company, FT.IR -spectra were recorded on shimadzu 8300, Kbr disk., H.NMR -spectra & (C.H.N) -analysis were recorded in Maliesia, the melting points were determined by digital electrothermal 9300 LTD, UK.

Corresponding Author

Rajaa Abed Email:- rajaabed1998@yahoo.co.in

Synthesis of compounds - 1, 2

A mixture of P -formal benzaldehyde (0.1 mole) reacted with di methyl malonate (0.2 mole) in basic medium of sodium hydroxide (10%) with mechanical stirr at room temperature for (4hrs), the precipitate was filtered & recrystallized to yield 88% of compounds 1, which (0.1 mole) reacts according to procedures [2-9] with (0.1 mole) of methylene di amine under reflux for (3hrs) in presence of absolute ethanol, the precipitate was filtered & recrystallized to give 89% of compounds 2.

Synthesis of compounds - 3- 6

The synthesis of these compounds was carried out according literature [2-9], a mixture of compound 2 (0.01 mole) with one of (0.01 mole) from (hydrazine, methylene di amine, quanidine, ethelyne di amine) respectively were heated under reflux for (5hrs) in presence of absolute ethanol, the precipitate was filtered & recrystallized to yield (87, 85, 87, 89) % of compounds 3-6 respectively.

Synthesis of compounds - 7-9

According to procedure [9], a mixture of compounds 2 (0.01 mole) with one of {(0.02 mole) from (2 -amino thiophene, 2 -aminothiazole) (0.01 of aniline)} respectively were refluxed for (5-6 hrs) in presence of absolute ethanol, the precipitate filtered recrystallized to yield (85, 87, 88) % of compounds 7-9 respectively.

Synthesis of compound - 10

A mixture of equimolar (0.01 mole) of compound 9 with hydrazine were reacted under reflux for (4hrs) &stirr, precipitate was filtered & dried ,recrystallized to yield 86 % of compound 10 [10-15].

RESULTS & DISCUSSION

The formation of compound 1 as starting compound proceed via reaction between dimethyl malonate with di aldehyde compound such as P-formal benzaldehyde, then compound 1 reacts with diamine compounds such as (methylene diamine, hydrazine, guanidine, ethylene diamine to yield cyclic compounds 2-6, & compound 2 reacts with primary amine compounds in one side or two side from compound 2 to yield compounds 7-10.

All these compounds characterized by I.R -spectra, (C.H.N)-analysis, melting points & some of them by H.NMR -spectra :

The I.R -spectra, showed an absorption band at (3026-3095) cm-1 due to (CH=C) of alkene in all

compounds 1-10 for formation of double bond of alkene, absorption band at (1728) cm-1 due to carbonyl of ester group(2) (CO-O-) in compounds 1, 2 which disappeared one of them & appeared other bands such as {(1660 -1696), (3278 - 3478)} due to {(carbonyl of amide CO-NH), (amine of amide NH -CO)}(2) respectively in compounds 3-10, & other bands are summarized in (Table 1) & (Figures 1-10).

The H.NMR -spectra showed important peaks at $\overline{\mathfrak{g}}$ (6.40-6.60) due to proton of (CH=C) alkene in all compounds , peaks at $\overline{\mathfrak{g}}$ (10.03-10.28) due to (NH-CO) proton of amide(2) in compounds 2, 3, 8, 9 peaks at $\overline{\mathfrak{g}}$ (3.85, 4.30) due to protons of methyl group in ester (-COOCH3) in compounds 2, 9 respectively, peaks at $\overline{\mathfrak{g}}$ (3.35-3.62) due to protons of methylene (15) in cycle (NH-CH2-NH) in compounds 2, 3, 8, 9, & other signals of functional groups show in the following, (Table 1).

The (C.H.N)-analysis & melting points, the experimental data were good results with calculated data, all these data & physical properties in (Table 1).

Comp.	(Only important frequency)					
No.	(CO) carbonylof amide	(NH) of amide	(CH=C)	Other groups		
1			3048	(CO-O-)carbonyl of ester :1728		
2	1660	3482	3046	(CO-O)carbonyl of ester: 1714		
3	1695	3299	3091			
4	1696	3290	3070			
5	1688	3312	3080	(C=N) :endocycle : 1537 ,(NH ₂) :3478 .		
6	1691	3492	3091			
7	1696	3317	3091	(C-S) in thiophene ring :676,1271		
8	1686	3278	3081	(C-S) in thiophene ring :675, 1211, (C-N) in thiophene ring :1168		
9	1682	3478	3026	(CO-O-) carbonyl of ester :1728		
10	1688	3278	3095	$(NH_2): 3300.$		

Table 1. (FT.IR) -data (cm⁻¹) of compounds- 1-10

Table 2. H.NMR (7 ppm) of some Compounds

Comp.	H.NMR _{((DMSO))} ((Only important peaks))					
No.	(NH) of amide	(CH=C)	methylene of (NH-CH ₂ -NH)	Other peaks		
2	10.04	6.60	3.62	4.30(COOCH ₃)methyl of ester		
3	10.10, 10.28	6.40 ,6.66	3.50			
8	10.08, 10.22	6.45	3.55	7.35 (proton of thiazol ring)		
9	10.24, 10.03	6.50	3.35	3.85 (COOCH ₃)methyl of ester		

Table 3. Physical properties & (C.H.N) -analysis of Compounds -1-10

Comp.	МЕ	M.p	Nome of compounds		Calc./ Found	
No.	WI.F	(+2)C°	Name of compounds	%C	&Н	%N
1	$C_{18}H_{18}O_8$	162	1-{(1,4-phenyl)-tetra methyl -bis	59.668	4.972	
			(2 -ene - propanoate)}.	59.421	4.763	
2	$C_{17}H_{16}O_6N_2$	189	1-{2-(diazane-4,6-dione)styrene}-3-dimethyl-	59.302	4.651	8.139
			2-ene-propanoate	59.188	4.44	8.09
3	$C_{15}H_{12}O_4N_4$	194	2-(diazane-4,6-dione)-2- (diazolidine-3,5-	57.692	3.846	17.948
			dione)-4- ethene-1-styrene .	57.38	3.67	17.71
4	$C_{16}H_{14}O_4N_4$	H ₁₄ O ₄ N ₄ 198	2,2-bis(diazane-4,6-dione)-4- ethene -styrene .	58.895	4.294	17.177
				58.625	4.13	17.05

Rajaa Abed and Alameer Gafel. / Singapore Journal of Pharmaceutical Research. 2014;1(1):30-37.

5	$C_{16}H_{13}O_4N_5$	220	2-(diazine-4,6-dione-2-amino)-2-(diazane-4,6-	56.637	3.384	20.64
			dione)-4- ethene styrene .	56.37	3.601	20.41
6	$C_{17}H_{16}O_4N_4$	208	2-(diazepane-5,7-dione)-2- (diazane-4,6-	60.00	4.705	16.470
			dione)-4-ethene- styrene .	59.93	4.44	16.25
7	$C_{23}H_{18}O_4N_4$	241	(1,4-phenyl)-2-(diazane -4,6-dione)-ethene-2-	57.740	3.765	11.715
/	S_2	241	bis (thiophene amide) ethene.	57.51	3.56	11.54
8	$\frac{C_{21}H_{16}O_4N_6}{S_2}$	284	(1,4-phenyl)-2-(diazane -4,6-dione)-ethene-bis	52.5	3.33	17.50
			(thiazole amide) ethene.	52.31	3.20	17.27
9	$C_{22}H_{19}O_5N_3$	273	(1,4-phenyl)-2-(diazane -4,6-dione)-ethene-2-	65.18	4.69	10.37
			(phenyl amide)-3-methyl-1-ene -propanoate.	65.04	4.43	10.27
10	$C_{21}H_{19}O_4N_5$	259	(1,4-phenyl)-2-(diazane-4,6-dione)-ethene-2-	62.22	4.69	17.28
			(phenyl amide)-3-hydrazo-3-one -1-propane.	62.10	4.29	17.15

Fig 1. FT.IR of compound-1

C SHIMADEL 75 - %1 60 45 SOME JE TYA.EQ. 208 P3.85 32 100 3487.57 30 116 15 3200 4000 3600 2800 2400 2000 1800 1600 1200 1400 1000 воо 600 400 1/cm Fig(2): FT IR of Compound [2] Comment; No. of Scens; 45 Date/Ti User; -Resolution; 4 [l/em]

Fig 3. FT.IR of compound-3

Fig 5. FT.IR of Compound- 5

Fig 6. FT.IR of Compound-6

Fig 7. FT.IR of Compound-7

Fig 8. FT.IR of Compound-8

Fig 9. FT.IR of Compound -9

Fig 10. FT.IR of Compound-10

SHIMADZU

Rajaa Abed and Alameer Gafel. / Singapore Journal of Pharmaceutical Research. 2014;1(1):30-37.

Schematic Synthesis

[7]

NH2

– Ph

NI MI

NH -

NH

CO

CO

[8]

CC

CO

0

[10]

HC

Ł

NH

NH

REFERENCES

- 1. Magherita B, Silvano C & Stefano D. (2012). Arkivoc, 262-279.
- 2. Nagham M Aljamali. (2012). As. J. ExpChem, 7 (1), 52-56.
- 3. Singh V, Yashovardhan S & Sudhir K. (2011). Int. J. Chem Tech .Res, 3 (2), 892-900.
- 4. Maher A, Sameh A & Fakhry A. (2012). *Global .J. Health .Sci*, 4(1), 174-183.
- 5. Ashraf M, Abelgalil A, Musaed A, Husam R, Mosa O & Mohammed A. (2011). *American, J. Biochem. & Biotech*, 7, 2, 43-54.
- 6. Gowramma B, Jubie S, Kalirajan R, Gomathy S & Elango K. (2009). Int .J. Pharmtech Res, 1, 2, 347-352.
- 7. Arshiya F, Sayaji R & Venkateshwarlu G. (2011). In. J. Chem Tech. Res, 3, 4, 1769-1780.
- 8. Wagnat W, Sherif M, Rafat M & Amr S. (2012). Int. J. Org Chem, 2, 321-331.
- 9. Nagham M Aljamali. (2010). J.Babylone .Sci, 18, 3, 925-942.
- 10. Gernot A & Wolfgang H. (2008). Molbank. J., M, 569, 1-4.
- 11. Girija S, Tarjeet S & Ram L. (2013). Arkivoc, 213-219.
- 12. Kamal M, Ahmed M & Hatem A. (2006). J. Chinese . Chem. Soci, 53, 873 880.
- 13. Roshan A, Zia M & Rukhsana J. (1996). Tr. J. Chem, 20, 186 193.
- 14. Vijay V, Gandhale S & Shinde N. (2012). Der. Pharma. Chemica, 4, 1, 320-328.
- 15. Nagham M Aljamali. (2013). J. Chem&Cheml, 3, 1, 37-47.

