e - ISSN - 2348 - 2206 Print ISSN - 2348 - 2192



# European Journal of Molecular Biology and Biochemistry



Journal homepage: www.mcmed.us/journal/ejmbb

# FLUORIDE STATUS OF DRINKING WATER IN TRIBAL BELT OF CHHATTISHGARH STATE: AN ANALYTICAL STUDY CARRIED OUT IN THE DISTRICT OF BALARAMPUR

# **Manish Upadhyay**

Department of Chemistry, Dr. CV Raman University, Kota, Bilaspur, (C.G), India.

# **Article Info**

Received 23/11/2013 Revised 16/12/2013 Accepted 19/11/2013

**Key words:** Climate, Dosage, Fluorosis, Permissible Limit, Consumption.

# **ABSTRACT**

Although fluoride was once considered an essential nutrient, the U.S. National Research Council has since removed this designation due to the lack of studies showing it is essential for human growth, though still considering fluoride a "beneficial element" due to its positive impact on oral health. The U.S. specifies the optimal level of fluoride to range from 0.7 to 1.2 mg/L (milligrams per liter, equivalent to parts per million), depending on the average maximum daily air temperature; the optimal level is lower in warmer climates, where people drink more water, and is higher in cooler climates. High concentrations of fluoride (F) in drinking water are harmful to human health. This communication reports F incidence in groundwater and its relation with the prevalence of dental and skeletal fluorosis in Ambikapur, Balarampur Dist. of Sarguja, Chhattisgarh, India. In 1994 a World Health Organization expert committee on fluoride use stated that 1.0 mg/L should be an absolute upper bound, even in cold climates, and that 0.5 mg/L may be an appropriate lower limit A 2007 Australian systematic review recommended a range from 0.6 to 1.1 mg/L Assay of fluoride concentration in ground water samples around Ambikapur district in Sarguja revealed that fluoride content in beyond the permissible limit in a some residential areas. The extent of Fluoride present in different samples was obtained by spectrophotometer. The extent of fluoride was found in village Bargahpara of Lakhanpur block found to be from minimum 1.63 to 1.91 mg/l. But F ion in Khaspara village of the same Block was 3.62 to 4.09 mg/l. Fluoride value of Chhiropara of Lundra Block was ranging from 3.74 to 4.12 mg/l. In Balarampur Dist. We found the problem to be more serious. A sample from Purvtola village of Balarampur block was found to contain F from 4.53 to 4.85 mg/lt. The same of samples of Korwapara was found to range from 3.72 to 4.13 mg/lt and in Sarpanchpara F ion concentration in water samples was found to be 3.45 to 3.75. It is further added that extent of fluoride content in water depends on the climatic conditions and increase in summer.

# INTRODUCTION

Safe drinking water is essential to humans and other life forms. Access to safe drinking water has improved over the last decades in almost every part of the

Corresponding Author

Manish Upadhyay

Email:- man\_bsp@rediffmail.com

world, but approximately one billion people still lack access to safe water and over 2.5 billion lack accesses to adequate sanitation. There is a clear correlation between access to safe water and GDP per capita. However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability. A recent report (November 2009) suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%. Water plays an important role in the world economy, as it functions as a



solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation. Approximately 70% of the fresh water used by humans goes to agriculture. Water is the chemical substance with chemical formula H<sub>2</sub>O. one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom water appears in nature in all three common states of matter and may take many different forms on Earth water vapor and clouds in the sky; seawater and icebergs in the polar oceans; glaciers and rivers in the mountains; and the liquid in aquifers in the ground. At high temperatures and pressures, such as in the interior of giant planets, it is argued that water exists as ionic water in which the molecules break down into a soup of hydrogen and oxygen ions, and at even higher pressures as super ionic water in which the oxygen crystallizes but the hydrogen ions float around freely within the oxygen lattice. Fluoride's effects depend on the total daily intake of fluoride from all sources. About 70-90% of ingested fluoride is absorbed into the blood, where it distributes throughout the body. In infants 80-90% of absorbed fluoride is retained with the rest excreted, mostly via urine; in adults about 60% is retained. About 99% of retained fluoride is stored in bone, teeth, and other calcium-rich areas, where excess quantities can cause fluorosis. Drinking water is typically the largest source of fluoride. In many industrialized countries swallowed toothpaste is the main source of fluoride exposure in unfluoridated communities.

#### **OBJECTIVES**

The quality of water is of vital concern for mankind since it is directly linked with human welfare. It is matter of history that pollution of drinking water caused water borne diseases which wiped out entire population of cities. The aim of this study was to determine the amount of fluoride in drinking water of Six villages of Ambikapur and Balarampur dist. Polluted water is the culprit in all such cases. The major sources of water pollution are domestic waste from urban and rural areas, and industrial wastes which are discharged in to natural water bodies. For this Physico-chemical analysis of drinking water samples will be taken from different six villages and aware to avoid all problems which come from more fluoride.

# Selected area

The study was carried out in Ambikapur and Balarampur district of Sarguja Division. Ambikapur district with an area of 16034.4 Sq.kms and the area of Balarampur is 3806.08 sq. kms. 54 percent population are tribal in Ambikapur whereas the same at Balarampur is 85.39 percent. These are the tw under developed districts in Chhattisgarh. About 36% of area encompasses reserved and protected forest land. The net irrigated area is 31968 ha. out of which 6077ha. (19 percent only) is irrigated by ground water. The two important Physiographic features of the districts are the Mainpat plateau and the Jamirpat plateau. The former is 28.8 km long and 12.8 km wide and

rises to a maximum height of 1152.45 metres. It forms the southern boundary with Raigarh district. The Jamirpat is about 3km wide. It forms the eastern boundary of Sarguja with Jharkhand State. The principal rivers of the district are the Kanhar, the Rihand, the Morna, the Mahan, the Geur, the Geger, the Neur, and the Gej. There are two distinct drainage system in the district. One is northernly and the other is southernly. First three samples (Korwapara, Purvtola and Sarpanchpara) are of Balarampur district and the rest three (Khaspara, Bargahpara, Chhiropara) are from Ambikapur Dist.

# **METHOD**

Samples were collected and analysed as per procedure laid down in the standard methods for examination of water and waste water of American public Health Association (APHA) composite sampling method was adopted for collection of samples of water from five location of village Sample for chemical analysis were collected in polyethylene container's. Samples collected for metal contents were acidified (1.0 ml HNO<sub>3</sub> per liter samples) [1]. Some of the parameter like p<sup>H</sup> Temperature, conductivity, dissolve oxygen T.D.S. were analysed on site using portable water analysis kit. The other parameter were analysed at laboratory [2].

#### **PROCEDURE**

Method: Spadns Spectrophotometric Analysis.

#### RESULTS

# Village I -KORWAPARA

A Total number of six samples were collected and tested for their fluoride concentration. Three samples represent surface water collected from river/nallah and represented as s1-sw<sub>1</sub>, s1-sw<sub>2</sub>,s1-sw<sub>3</sub> while the remaining samples were collected from under-ground water / tube wells s4-sw<sub>4</sub>, s1-sw<sub>5</sub>,s1-sw<sub>6</sub>. All the six samples were colourless, odourless, and free from solid suspension. The result of absorbance have been compiled below for the s-1 samples:-

# Village II: PURVTOLA

A Total number of six samples were collected and tested for their fluoride concentration. Three samples represent surface water collected from river/nallah and represented as s2-sw<sub>1</sub>, s2-sw<sub>2</sub>,s3-sw<sub>3</sub> while the remaining samples were collected from under-ground water / tube wells s4-sw<sub>4</sub>, s5-sw<sub>5</sub>,s2-sw<sub>6</sub>. All the six samples were colourless . odourless, and free from solid suspension. The results of absorbance have been compiled below for these samples:-

# Village III: SARPANCHPARA

A Total number of six samples were collected and tested for their fluoride concentration. Three samples represent surface water collected from river/nallah and represented as s3-sw<sub>1</sub>, s3-sw<sub>2</sub>,s3-sw<sub>3</sub> while the remaining



samples were collected from under-ground water / tube wells  $s3-sw_4$ ,  $s3-sw_5,s3-sw_6$ . All the six samples were colourless . odourless, and free from solid suspension. The result of absorbance have been compiled below for these samples:-

#### Village IV- KHASPARA

A Total number of six samples were collected and tested for their fluoride concentration. Three samples represent surface water collected from river/nallah and represented as S4-sw<sub>1</sub>, s4-sw<sub>2</sub>, s4-sw<sub>3</sub> while the remaining samples were collected from under-ground water / tube wells s4-sw<sub>4</sub>, s4-sw<sub>5</sub>, s4-sw<sub>6</sub>. All the six samples were colourless, odourless, and free from solid suspension. The result of absorbance have been compiled below for these samples:-

#### Village V- BARGAHPARA

A Total number of six samples were collected and tested for their fluoride concentration. Three samples represent surface water collected from river/nallah and represented as S5-sw<sub>1</sub>, S5-sw<sub>2</sub>,S5-sw<sub>3</sub> while the remaining samples were collected from under-ground water / tube wells S5-sw<sub>4</sub>, S5-sw<sub>5</sub>,S5-sw<sub>6</sub> .All the six samples were colourless, odourless, and free from solid suspension. The results of absorbance have been compiled below for these samples:-

# Village VI CHHIROPARA

A Total number of six samples were collected and tested for their fluoride colourless. Odourless, and free from solid suspension. The results of absorbance have been compiled below for these samples:-

Table 1. Fluoride Concentration of water samples in village Korwapara

| samples | Fluoride in mg/l |
|---------|------------------|
| S1-sw1  | 4.12             |
| S1-sw2  | 4.05             |
| S1-sw3  | 4.13             |
| S1-sw4  | 3.85             |
| S1-sw5  | 3.73             |
| S1-sw6  | 3.81             |

Table 2. Fluoride Concentration of water samples in village Purvtola

| Samples | Fluoride in mg/l |
|---------|------------------|
| S2-sw1  | 4.81             |
| S2-sw2  | 4.74             |
| S2-sw3  | 4.85             |
| S2-sw4  | 4.59             |
| S2-sw5  | 4.61             |
| S2-sw6  | 4.53             |

Table 3. Fluoride Concentration of water samples in village Sarpanchpara

| samples | Fluoride in mg/l |
|---------|------------------|
| S3-sw1  | 3.58             |
| S3-sw2  | 3.64             |
| S3-sw3  | 3.75             |
| S3-sw4  | 3.50             |
| S3-sw5  | 3.45             |
| S3-sw6  | 3.48             |

Table 4. Fluoride Concentration of water samples in village Khasnara

| Samples | Fluoride in mg/l |
|---------|------------------|
| S4-sw1  | 4.09             |
| S4-sw2  | 3.92             |
| S4-sw3  | 3.94             |
| S4-sw4  | 3.62             |
| S4-sw5  | 3.70             |
| S4-sw6  | 3.65             |

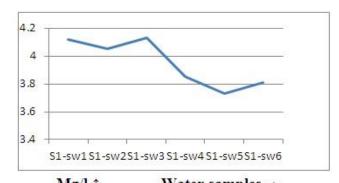
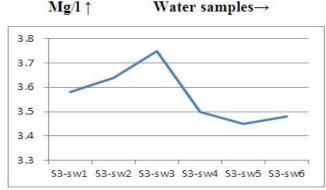
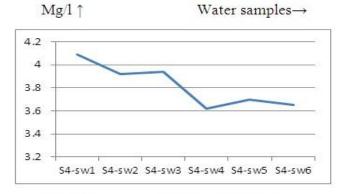
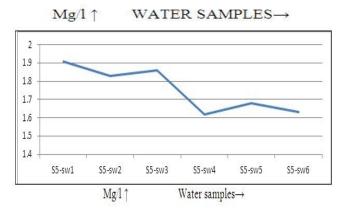
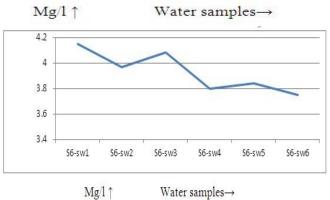



Table 5. Fluoride Concentration of water samples in village Bargahpara


| samples | Fluoride in mg/l |
|---------|------------------|
| S5-sw1  | 1.91             |
| S5-sw2  | 1.83             |
| S5-sw3  | 1.86             |
| S5-sw4  | 1.62             |
| S5-sw5  | 1.68             |
| S5-sw6  | 1.63             |


Table 6. Fluoride Concentration of water samples in village Chhiropara


| samples | Fluoride in mg/l |
|---------|------------------|
| S6-sw1  | 4.15             |
| S6-sw2  | 3.97             |
| S6-sw3  | 4.08             |
| S6-sw4  | 3.80             |
| S6-sw5  | 3.84             |
| S6-sw6  | 3.75             |














#### DISSCUSSION

Result of analysis of Water from Six villages of the two Dist. are recorded in table 1,2,3,4,5 and 6. In all the six villages each have six sampling station (three were collected from the surface and three samples were collected from the tube well). In Korwapara village of Balarampur dist. fluoride was recorded in the range of 4.12, 4.05, 4.13, 3.85, 3.73 and 3.81 mg/l. Maximum permissible limit for fluoride as world Health organization (WHO) is 1.5 mg/l. [3] all six samples fluoride found excess of their permissible limit.

Water sample analysis of Purvtola village of Balarampur district is recorded in table 2. From this sampling station three samples were collected from the surface and three samples were collected from the tube well. Fluoride was recorded in the range of 4.81, 4.74, 4.85, 4.59, 4.61, and 4.53 mg/l. The Maximum permissible limit for fluoride as Indian standard is 0.6 to 1.2 mg/l. all six samples fluoride found excess of their permissible limit.

Mximum permissible limit for fluoride as NEERI manual (1991) is 1.0 mg/l. Water from village Sarpanchpara of Balarampur are recorded in table 3. From this sampling station three were collected from the surface and three samples were collected from the tube well. Fluoride concentration was recorded in the range of 3.41, 3.64, 3.75, 3.50, 3.45 and 3.48 mg/l. All six samples fluoride found excess of their permissible limit.

The concentration of fluoride from village Khaspara of Ambkipur dist. are recorded in table 4 .Fluoride was recorded in the range of 4.09, 3.92, 3.94, 3.62, 3.70 ,and 3.81 mg/l. all six samples fluoride found excess of their permissible limit [4-8].

The concentration of fluoride in Bargahpara village of Ambikapur was recorded as 1.91, 1.86, 1.83,

1.62, 1.68 and 1.63mg/l. . Fluoride concentration fom the samples of Chhiropara sampling station of Ambikapur district were recorded as 4.12, 3.97, 4.08, 3.74, 3.80 and 3.75 mg/l.It was also noted that the fluoride concentration in water is also dependent on climatic condition. In a same sampling station it was found that the concentration of fluoride is higher in summer then the winter and rainy season. The high evaporation during the summer is responsible for the high content of F in water. As in summer the drinking water problem is self-serious. So when there is the question of purity of water, it's a very difficult job for the tribal people to find the drinking water which is of drinking water quality [9-16].

# **CONCLUSION**

The preset study has been made to evaluate the Fluoride concentration of water samples collected from the villages of Balarampur and Ambikapur Dist, Chhattisgarh. Each village has made six sampling satation. These samples were analysed for study of fluoride and their effect in surrounding area [17-21]. Fluoride in naturally occurring in water can be above or below from recommended levels. Both the excess and deficiency of fluoride in water produces adverse effects on the health. Maximum acceptable limit for fluoride as world Health organization (1984) is 1.5 mg/l. In present study the fluoride concentration of water samples of all Six villages were found over the permissible Limit. Sodium Fluoride used in bauxite mines may be the major source of these fluoride contraptions. So to prevent Fluoride pollution in water and its consequences proper steps are to be taken regarding the use and effects of Sodium Fluoride.

# **REFERENCES**

- 1. APHA. (1992). Standard methods for the examination of water and wastewater American Public Health Association, Washington DC.
- 2. Pillai KS and Stanley VA. (2002). Implication of fluoride an endless uncertainty. J Environ Biol, 23, 81–87.
- 3. Mall RK, Gupta A, Singh R, Singh RS and Rathore LS. (2006). Water resources and climate change, an Indian perspective. *Curr Sci*, 90, 1610–1626.
- 4. Ahmed S, Bertrand F, Saxena V, Subramaniyam K and Touchard FA. (2002). Geostatistical method of determining priority of measurement wells in a fluoride monitoring network in an aquifer. *J Appl Geochem*, 4, 576–585.
- 5. Beg MK. (2009). Geospatial analysis of fluoride contamination in groundwater of Tamnar area, Raigarh district, Chhattisgarh state MSc thesis, ITC, The Netherlands.
- 6. BIS. (1991). Indian Standards for drinking water specification (IS10500, 1991), Bureau of Indian Standards, New Delhi.
- 7. Cao J, Zhao Y, Lin JW Xirao RD and Danzeng SB. (2000). Environmental fluoride in Tibet. Environ Res, 83, 333–337.
- 8. Carton RJ. (2006). Review of the 2006 United States National Research Council Report. Fluoride in drinking water Fluoride, 39, 163-72.
- 9. Chae GY, Seong, TM, Bernhard, K, Kyoung-Ho K and Seong-Yong K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. *Sci Total Environ*, 385, 272–283.
- 10. Handa BK, (1975). Geochemistry and genesis of fluoride containing groundwater in India. Ground Water, 13, 275–281.
- 11. Chaturvedi AK, Yadva KP, Yadava KC, Pathak KC and Singh VN. (1990). Deflouridation of water by adsorption on fly ash. *Water Air Soil Pollut*, 49, 51–61.
- 12. Meenakshi and Maheshwari RC. (2006). Fluoride in drinking water and its removal. J Hazard Mater, 137, 456–463.
- 13. Rajgopal R and Tobin G. (1991). Fluoride in drinking water, a survey of expert opinions. *Environ Geochem Health*, 13, 3–13



- 14. Ripa LW. (1993). A half-century of community water fluoridation in the United States, review and commentary. *J Public Health Dent*, 53, 17–44.
- 15. Subba Rao N and Devdas DJ. (2003). Fluoride incidence in groundwater in an area of peninsula India. *Environ Geol*, 45, 243–251.
- 16. Saxena VK and Ahmad S. (2002). Inferring the chemical parameter for the dissolution of fluoride in groundwater. *Environ Geol*, 25, 475–481.
- 17. Vikas C, Kushwaha RK and Pandit MK. (2009). Hydrochemical status of groundwater in Distric Ajmer (NW India) with reference to fluoride distribution. *J Geol Soc India*, 73, 773–784.
- 18. UNICEF. (1999). State of the art report on the extent of fluoride in drinking water and the resulting endemicity in India Fluorosis Research and Rural Development Foundation for UNICEF, New Delhi.
- 19. USPHS. (1987). Drinking water standards United States Public Health Services, Washington DC.
- 20. WHO. (2006). Fluoride in drinking water, World Health Organization, Geneva.
- 21. WHO. (1984). Guidelines for drinking water quality, World Health Organization, Geneva.

