e - ISSN - 2348 - 2184 Print ISSN - 2348 - 2176

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

Journal homepage: www.mcmed.us/journal/ajbpr

SYNTHESIS OF HETEROATOMES CYCLES THROUGH CYCLIZATION REACTIONS

*Nagham and Mahmood Al –Jamali

Assistant Professor, Department Chemistry, College of Education for Women, Kufa University, Iraq.

Article Info	ABSTRACT
Received 20/10/2013	In the present work, ketones compounds have played an important role in synthesis of
Revised 10/11/2013	compounds 1-13, a series of compounds(sulphur cycles, nitrogen cycle) prepared via
Accepted 12/11/2013	cyclo addition reaction & converted to cyclic compounds which contain di heteroatoms
Key words:	like (S,N) in same cycle(seven memberrd ring ,.six memberd ring ,five memberd ring).The
Heteroatome Cycles,	foramted compounds 1-13 have been investigated using several chemical techniques
Intramolecular, Ncycle.	(¹ H.NMR-Spectra ,FT.IR- Spectra ,(C.H.N) –analysis & melting points).

INTRODUCTION

In continuation of our previous work on the synthesis of hetero atoms cycles to obtain new uni & bicyclic compounds which have chemical & biological activities [1-5], sulphur, nitrogen, & oxygen containing heterocyclic compounds 1-3 have been used as ascaffoled to synthesize of pharmaceutical drugs & industrial applications In this paper, the compounds generally consist of 5, 6 & 7-membered saturated & unsaturated cycles & more than one hetero atom which may be similar or dissimilar [6-8]. A large number of heterocyclic compounds are essential to life such as alkaloids, essential amino acids, the antibiotics, vitamins haemoglobin the hormones 8-12. The mechanism of reactions involved, interaction of acetophenon or acetone with Bromine to produce Aryl halide or Alkyl halide, [8-12]. Which react with (sulphur- compounds, aminecompounds, carboxyl-compounds) to produce uni & bihetero cycles from hetero atoms [12-14].

MATERIALS AND METHODS

All chemicals used were supplied from Fluka&

Corresponding Author Dr. Nagham Email:- dr.nagham_mj@yahoo.com BDH - company, purity 99.5 %. All measurements were carried out 1 – Melting points: electro thermal 9300, melting point engineering LTD, U.K2 – FT. IR spectra: fourrier transform infrared shimadzu 8300 – (FT .IR), KBrdisc was performed by CO.S.Q.Iraq. 3 – H.NMR-spectra and (C.H.N) – analysis: in center lab – institute of earth and environmental science, al –byat university, Jordan.

Synthesis of compounds -1

The reaction of acetophenone (0.1 mole, 12g) with two molar equivalence of bromine (0.2 mole, 15.9 g) in acetone acid (90-100) C° , resulted in the formation 86% of compound 1.

Synthesis of compounds - 2-8

A mixture of compound 1 (0.1 mole , 27.7 gm) treated with equal molar quantity of one of {(0.1 mole , 7.5 gm of thio urea),(0.1 mole , 4.60 gm of methylene diamine),(0.1 mole , 12.5 gm of O-mercapto aniline),(0.1 mole , 13.8 gm of Salicylic acid),(0.1 mole , 11 gm of benzene thiol)}, respectively ,under reflux for (3hrs) in presence of absolute ethanol , the precipitate was filtered , dried, & crystallized from absolute ethanol to produce (84,86,84, 87,85)% respectively from compounds 2,3,4,5,6. Treatment of compound 5 (0.1 mole 33.4gm) with ammonium thiocyanate (0.1 mole, 7.6 gm) in presence of anhydrous acetic acid & drops of pyridine to produce 85%

10 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

of compound 8. Treatment of compound 6 (0.1 mole, 30.6 gm) with (0.1 mole, 12.5 gm) of O-mercapto aniline in presence of ethanol to produce 87% of compound 7 [15, 16].

Synthesis of compounds - 9-11

The reaction of (0.1 mole, 5.8 gm) of acetone with (0.1 mole, 11gm) of benzene thiol in boiling ACOH/H2SO4 to produce 85% of compound 9, which reacts (0.1 mole, 16.6 gm) with bromine (0.1 mole, 15.9 gm) in presence of acetic acid to produce 87% of

Table 1. (FT.IR)-data (cm⁻¹) of compounds -1-13

compound 10, which reacts (0.1 mole, 32.3 gm) with (0.1 mole, 8.3 gm) of 2-amino imidazole to yield 85% of compound 11 [17].

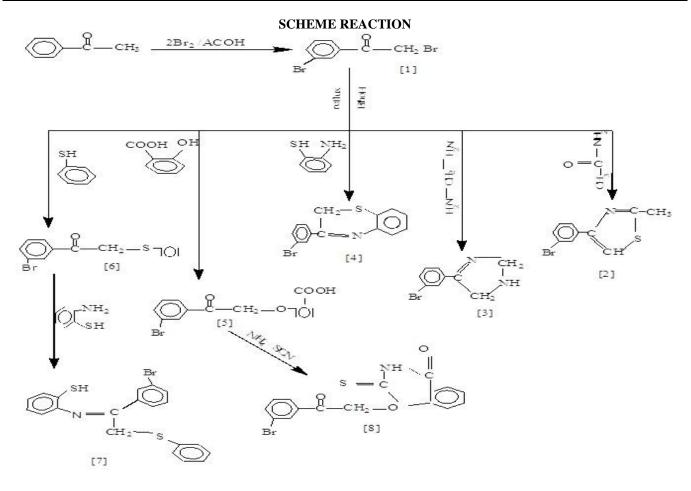
Synthesis of compounds - 12,13

The reaction of (0.1 mole, 12.5 gm) of Omercapto aniline with two molar equivalence from one of $\{(0.2 \text{ mole}, 11.6 \text{ gm of acetone}), (0.2 \text{ mole}, 24 \text{ gm of} acetophenone})\}$ in presence of iodine wth methyl cyanide at (25 C°) for (15 min) to produce (88,86)% respectively from compound 12,13 [18].

Comp. no.	I.R _(KBR) (Important group)			
1	(C-Br) :870			
2	(C-N) endo cycle : 1436, (CH-S) :1417, (C-S) endo cycle :663, (CH=C): 3070, (CH), aliphatic :2920.			
3	(C-N) endocycle :1540, (CH) aliphatic :2955, (NH): 3320, (C=N) imine group : 1620.			
4	(C-N) endo cycle :1548 ,(C=N) imine group :1645 ,(CH ₂ -S) :1433 , (C-S):682			
5	(C-O-C): 1330, (-C=O) carbonyl of ketone :1720, (-C=O)carbonyl of carboxyl group :(1770).			
6	(CH ₂ -S) :1430 ,(-C=O) carbonyl of ketone :1725 .			
7	(C=N) imine :1610 ,(CH ₂ -S):1420 , (-SH):2520 .			
8	(NH-C=O)carbonyl of amide :1690, (-C=O) carbonyl of ketone :1720.			
9	(CH ₂ -S):1415, (-C=O) carbonyl of ketone :1725, (CH) aliphatic :2970.			
10	(CH ₂ -S): 1420 ,(C-Br):860 ,(-C=O) carbonyl of ketone : 1720 .			
11	(C=N) imine :1639 ,(C-N) endo cycle :1498 ,(CH=CH):3058 ,(CH ₂ -S) :1434, (C-S):634 .			
12	(C=N) imine :1655 ,(C-S): 632 , (CH) aliphatic :2908 .			
13	(C=N) imine : 1620, (C-S):670, (CH) aliphatic :2960.			

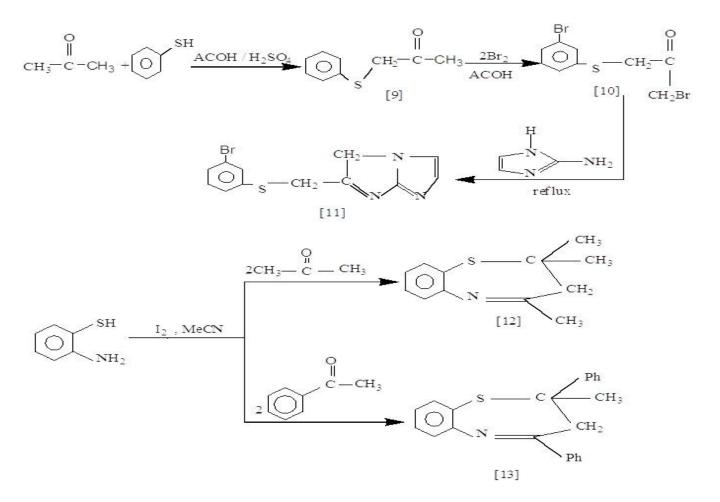
Table 2. H.NMR-data (f ppm) of compounds - 1-13

Comp. No.	H.NMR _(DMSO) (Important peaks)				
1	12.3 (2H, CH_2 -C=O) protons of ketone.				
2	5.43 (1H, CH-S) proton of (CH) in cycle, 1.05 (3H, -CH ₃) protons of methyl group.				
3	3.2 (CH ₂ -NH) , 3.6 (N-CH ₂)				
4	5.14 (2H ,CH ₂ -S) .				
5	12.3 (2H, CH ₂ -C=O) protons of ketone, 14.2 (H, COOH) proton of carboxylic group.				
6	12.7 (2H, CH_2 -C=O) protons of ketone.				
7	5.04 (2H, CH ₂ -S), 5.41 (1H, SH).				
8	10.2 (1H, -NH-C=O) proton of amide, 12.4 (2H,CH ₂ -C=O) proton of ketone.				
9	12.2 (2H,CH ₂ -C=O) proton of ketone , 12-75 (3H, CH ₃ -C=O) ketone .				
10	12.3 (2H, CH ₂ -C=O) proton of ketone, 12.90 (2H, CH ₂ -C=O) proton of ketone.				
11	3.64 (2H, CH ₂ -N) endocycle, 2.3 (CH=CH) endo cycle, 5.14 (2H, S-CH ₂).				
12	1.21 (6H, C(CH ₃) ₂), 1.02 (2H, CH ₂), 1.05 (3H, CH ₃).				
13	1.1 (CH ₂) , 1.3 (C-CH ₃)				


Table 3. physical properties & (C.H.N)- analysis of compounds -1-13

Comp.no.	M.F	M.P C°	Name of compounds		ınd.	
				С%	H%	N%
1	$C_8H_6OBr_2$	170	$1-(3^{-}$ -bromophenyl)- 2- bromoethanone .	34.557	2.159	
				34.312	2.017	
2	C ₁₀ H ₈ NSBr	190	2-methyl -4- (3 ⁻ -bromo phenyl)-thiazole.	47.262	3.158	5.513
				47.183	3.092	5.334
3	$C_9H_9N_2Br$	182	2-(3 ⁻ -bromo phenyl)- imidazole .	48.452	3.140	12.56
				48.268	3.201	12.43

11 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH



4	C ₁₄ H ₁₀ NSBr	220	3-(3 ⁻ -bromo phenyl)-5,6-benzo -1,4- thiaine	55.281	3.290	4.606
				55.201	3.172	4.561
5	$C_{15}H_{11}O_4Br$	205	$1-(2^{-}-benzoic)-2-(3^{-}-bromo phenyl)$	53.747	3.284	
			ethanone ether	53.692	3.192	
6	C ₁₄ H ₁₁ OSBr	188	2-(3 ⁻ -bromo phenyl)-1-benzene sulphide –	54.740	3.584	
			ethanone.	54.631	3.621	
7	$C_{20}H_{16}NS_2Br$	198	1-(2 ⁻ -Mercaptobenzene)-2- (3 ⁻ -bromo	57.985	3.874	3.382
			phenyl)-2-(methyl phenyl sulphide)- imine .	57.814	3.745	3.401
8	C ₁₆ H ₁₁ NO ₃ S	250	$1-(2^{-}+3^{-}-(bromo phenyl)-ethanone\} -5,6-$	50.941	2.918	3.714
	Br	250	benzo-4-one-2- thione –oxazae .	50.873	2.841	3.662
9	C ₉ H ₁₀ OS	180	3-(phenyl sulphide) acetone .	65.060	6.024	
				65.01	6.110	
10	$C_9H_8OSBr_2$	194	3-(3 ⁻ -bromophenylsulphide)-1- bromo	33.353	2.470	
			acetone.	33.281	2.421	
11	$C_{12}H_{10}N_3SBr$	240	5-(3 ⁻ -bromophenyl)- methyl sulphide -2,3-	46.768	3.247	13.640
			bi imidazole.	46.631	3.192	13.571
12	$C_{12}H_{15}NS$	225	2,3-benzo -7di methyl -5-methyl – 1,4-	70.243	7.317	6.829
			thiazepine.	70.152	7.242	6.761
13	$C_{22}H_{19}NS$	235	2,3-benzo-5,7-diphenyl -7-methyl -1,4-	80.243	5.775	4.255
			thiazepine.	80.142	5.623	4.162

$\textbf{12 | } \mathsf{P} \mathsf{ a g e } \mathsf{ american journal of Biological and Pharmaceutical Research}$

RESULTS

All the synthesized compounds 1-13 have been characterized by their melting points and spectroscopic methods (FT.IR ,H.NMR spectrum, (C.H.N)-analysis) & melting points:Their FT.IR-Spectrum showed an absorption band at (870) cm⁻¹ in compound 1 due to the (C-Br), which disappear & other bands are appear at (1436-1548) cm⁻¹ for (C-N) endo cycle in compounds 2-4 & bands due to (C-S , C-NH , C-O , CH-NH , C=N imine group) in compounds 2-8, while the band of (-C=O) carbonyl of ketone in compounds 1,6,10 disappear & other bands⁽¹³⁻¹⁵⁾ are appear at (1620-1655) cm⁻¹ due to imine group (CH=N) , bands due to {(C-N) endo cycle ,(C-S)⁽¹⁶⁾endo cycle } in compounds 2-4 ,10-13 , new band (-N-C=O) amide group in cycle of compound 8 appeared , band due to (CH₂–S) appeared in compounds 6, 7, 9, & others bands are summarized in (Table 1).

DISCUSSION

Their H.NMR-Spectra showed signal at $\int 12.3$ due to proton of ketone in compound 1, which disappear & new signals appear at $\int (5.04-5.43)$ due to protons of (CH-S)⁽¹⁶⁾ in compounds 2,4,7, 11, signals at $\int (3.2-3.64)$ due

to(CH₂–NH,CH₂–N) in compounds 3,11, signal at $\int 10.2$ due to amide group (-N-C=O) in compound 8, & other data of functional groups⁽¹⁶⁻¹⁸⁾ show in the following , (Table 2).

Their (C.H.N)- analysis & melting points, it was found from compared the calculated data with experimentally data of these compounds ,the results were compactable , the data of analysis , M.F & melting points are listed in table 3.

CONCLUSION

Synthesis of cyclic compounds from thiacompounds, nitrogen compounds by using intra molecular reaction of these compounds in convertion these compounds to cyclic compounds.

ACKNOWLEDGMENT

I would like to express my thanks to Mr.Uodai.A. in Jordan for providing (C.H.N) element analytical, and H.NMR –spectra & melting points And express my thanks to(United Arabic Company) & (Zaidan Company of Chemical) for supplied some materials.

13 | P a g e AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

REFERENCES

- 1. Shridhar A, Keshavayya J, Joy H & Shoukat R. (2011). International .Res. J of pure & Appl. Chem, 1, 3, 119-129.
- 2. Parikh P, Hiren M & Dhrubo J. (2011). International. J. Drug Develop & Res, 3,248-255.
- 3. Nusrat B & Rabiul M. (2007). Bang .J. pharm, 2, 2, 81-87.
- 4. Parameswaran M, Thengungal K and Gopalakrish S. (2009). Acta . Pharm, 59, 159-170.
- 5. Khalid A & Hatem A. (2010). *Molecule*, 15, 3775-3815.
- 6. Baueyjee A, Vera W, Mora H, Laya M, Liadis B & Cabrera E. (2006). J.Sci, Indust. Res, 65, 299-308.
- 7. Gaber H & Bagley M. (2011). European. J. Chem, 2, 2, 214-222.
- 8. Hamada N & Essam M. (2011). Molecule, 16, 2304-2312.
- 9. Vinay V & Lakshika K. (2011). I.J.Rps, 1, 1, 17-27.
- 10. Elif K & Yildirim. (2010). Turk .J. Chem, 34, 859-867.
- 11. Nagaraj A & Sanjeeva C. (2008). J.Iran .Chem .Soc 5, 2, 262-267.
- 12. Serdar M, Nurhan G, Sengul A & Neslihan D. (2007). Turk .J .Chem, 31, 315-326.
- 13. Sachin L, Chetan M, Sauganna B & Sandip K. (2010). Int. J. ChemSci & Appl, 1, 1, 42-49.
- 14. Hassan M, Sherif A & Mohammed S. (2010). J.K.A.U, 22, 1, 177-191.
- 15. Suheel K, Kovvuri T, Appikonda V, Gudaparthi O & Dubey P. (2011). Der. Pharm .Chem, 3, 5, 113-122.
- 16. Nagham M Aljamali. (2012). Asian. J. Exp. Chem, 7, 1, 52-56.
- 17. Gholamhossein G, Aliakbar D, Vida T, Kazuma G and Hiroyki I. (2012). Polyhedrone, 31, 265-271.
- 18. Xueguang R, Lingyun W, Derong C, Yingcai L and Jie H. (2010). Appl.Orgmet.Chem, 25, 9-15.

