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ABSTRACT 

Image restoration in image processing is often Because of its ill-posedness to the lack of specific solutions. An image's 

quality is significantly affected by the limitations imposed by the solution's characteristics. In this study, To enhance the 

restoration of NAS-RIF, we propose an extension with use in SPECT medical imaging based on data fusion. In the NAS-

RIF approach, the restoration process can be restricted by adding a regularisation term that stabilises the inverse solution. In 

anatomical restoration techniques (MRI), high resolution data can limit the restoration process. A structural anatomy-based 

regularisation term is created by unsupervised Markovian segmentation based on the volume of Data collected by patients 

through MRI and SPECT. As part of the evaluation, thirty pairs of MRIs and SPECTs were acquired were performed on 

various individuals and phantoms from Hoffman and Jaszczak. The signal-to-noise ratio is the number of signals per unit of 

noise, the method outperforms a traditional Metz filter-based guided restoration strategy. 
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INTRODUCTION

This poorly posed inverse problem requires the inclusion 

of a regularization term in the picture restoration 

framework. Using this fusion-based regularisation term, 

we explore any challenges associated with picture 

restoration when data from a different modality is used 

(intermodality). Our present study focuses on a novel 

modification It is possible to constrain NAS-RIF inverse 

filtering using an intermodality registration, which 

enables NAS-RIF inverse filtering to be computed, by 

configuring the NAS-RIF inverse filtering with the 

Surgical images that require restoration of anatomical 

and functional information (from the same anatomical 

structure).  
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A high spatial resolution Imaging procedure, such as CT 

scans or MRIs, can help determine our application to 

extract anatomical information, and the high spatial 

resolution mode is then utilized in functional SPECT 

imaging to improve contrast. 

 Single photon emission computed tomography 

(SPECT) images of the brain exhibit high contrast and a 

high signal-to-noise ratio are somewhat In comparison 

with anatomical dimensions approaches of imaging (The 

use of MRIs and CT scans). Thus, SPECT images of the 

brain can provide information about only be used in a 

limited number of applications. A functional deficiency, 

on the other hand, has a significantly lower tracer uptake 

than focal atrophy, whose tissue is physically intact but 

whose CSF replaces it [1]. 

http://www.mcmed.us/journal/ajomr
http://www.mcmed.us/journal/ajomr
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Images taken with SPECT have a high spatial resolution 

has been enhanced by a number of techniques to date. 

Techniques used to restore images can be divided into 

two main categories: those that utilize the restoration 

techniques that are used during reconstruction from 

projections, as well as those that are used after the 

reconstruction has been completed. We provide a method 

for Reconstruction after post-tomography that is largely 

independent of scanner characteristics in this study. 

 For example, Rajabi et al. used four commonly 

Filters used (Hannaning, Butterworth, Metz, and Wiener) 

for investigating SPECT of the myocardium with Tc-

sestamibi perfusions [2]. Hatzinakos and Kundur [4] 

introduced NAS-RIF to accommodate an imaging 

method based on 3D SPECT in [3] in order to restore the 

context for 3D SPECT imaging. When An object's image 

is blind deconvoluted with NAS-RIF a gray (or noisy) 

backdrop, the method is applicable. Since an image 

Against a noisy background, a finite support represents 

an actual, unaltered rCBF map of the human brain, this 

technique can be effectively used for brain SPECT 

imaging (the background depends on Radioactive 

imaging is subject to both Poisson noise and on 

electronic noise from a scanner), this technique can be 

used effectively for brain SPECT imaging. This 

deconvolution technique only requires the nonnegativity 

of the genuine image as well as its support. According to 

[3], a 3D Markovian segmentation method was used to 

correctly identify this support using the SPECT volume. 

 In the Bayesian tomographic reconstruction 

process [5, 6], the same tactic is used Without smoothing 

edges, noise can be controlled, but in this case during the 

reconstruction process. Anatomical "landmarks" are 

identified by In addition to structural information 

regarding these landmarks, the presence and location of 

local discontinuities and homogeneous regions can be 

gathered as well, as shown by MR images). The models 

usually suggest that adjacent Functioning pixels should 

have the following characteristics: a gray level value of 

the same value There are two types of homogeneity: a 

local (local homogeneity) and a global (global 

homogeneity) Anatomically segmented and recognized 

"uniform" areas. 

By adding spatially-adapted regularization to the NAS-

RIF algorithm, we propose extending the approach 

described in [3]. In addition to minimizing noise 

amplification and ringing aberrations, this regularisation 

term integrates anatomical information derived from 

high-resolution anatomical MRI images efficiently [9]. 

After registering the patient's MRI and SPECT volumes, 

the unsupervised Markovian segmentation output was 

acquired via this structural anatomy-based regularisation 

term. Because the proposed regularization term is 

quadratic, the NAS-RIF process minimises a newly 

convex objective cost function using recursive filtering of 

the degraded image. A supervised 

deconvolution/restoration procedure using a traditional 

Metz filter was used to evaluate our restoration technique 

using Hoffman and Jaszczak SPECT Phantoms. 

Following is a breakdown of the essay's structure. 

Section 2 briefly describes the NAS-RIF 3D anatomical 

constraint deconvolution method. Described in Section 3 

are the algorithms for registration and segmentation. A 

description of the validation procedure is provided in 

Section 4. Using phantom and actual brain SPECT 

volumes, we then validate the suggested model in Section 

5. Our discussion comes to an end in Section 7. 

 

In NAS-RIF, anatomical restrictions are imposed 

Version D of the Extended NAS-RIF 

 Using the linear model proposed in [3], we 

assume that 3D SPECT images will be degraded in our 

application. The operator and the additive noise represent 

the true image and the point spread function (PSF), 

respectively, as well as the 3D discrete linear convolution 

operator. In other words, the 3D blind deconvolution 

problem asks the observer to figure out (or its inverse) in 

the face of hazy observations. 

 The 3D extended version of the NAS-RIF 

deconvolution algorithm uses the output of a FIR filter of 

dimension to estimate the true image. An estimated 3D 

image is then projected using a nonexpansive mapping 

(implying that the image is assumed to be nonnegative 

and has a known support) using a nonlinear filter that 

assigns the estimated 3D picture to a space corresponding 

to the known properties of the genuine image. This 

difference between this projected image and is the error 

signal for updating the variable filter. 3D deconvolution 

cost functions are defined as where, if, and if for the 

deconvolution of 3D images. Each pixel inside the 

support zone is represented by a single pixel, and each 

pixel outside the support zone is represented by a single 

pixel. 

 Using the first term, negative voxels in the 

support are penalized in order to keep the image estimate 

nonnegative. In cases where coordinates outside of the 

support differ significantly from those in the background 

average, the second term penalises them. In this case, a 

positive constant is used to avoid a simple all-zero 

minimal solution. 

 With respect to the 2D case, the above equation 

is convex, as described in [10]. A similar characteristic 

applies to convergent gradient minimization in a 3D 

situation, enabling the algorithm to reach a global 

minimum through conjugate gradient minimization [10]. 

 

3D Anatomical Constraints for NAS-RIF 

 One of the main drawbacks of the NAS-RIF 

technique is that it amplifies noise at low SNRs [4]. The 

high-pass characteristic of the inverse filter amplifies 

high-frequency noise, leading to this effect. Therefore, 

the solution at convergence could not provide the most 

accurate estimate of the actual item in the presence of 
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noise. [4] Kundur and Hatzinakos suggest stopping the 

iterative restoration process through eye examinations as 

a solution to this issue. Due to strong supervision 

required and the difficulty in identifying the best iteration 

for termination (different parts of the image can converge 

at differing rates), this method is unreliable in reality. 

 NAS-RIF can be augmented with anatomical 

data from MRI (or CT) images with high resolution by 

using this regularisation method in this study. Besides 

preventing noise amplification, the proposed 

regularisation term stabilizes the inverse solution, does 

not require supervision (parameter tweaking or stopping 

criteria), and can provide more effective constraints to 

the restoration problem. To recover this functional 

SPECT image across previously discovered and 

segmented anatomical regions, a piecewise smoothness 

restriction must be applied. This can be achieved by 

combining the output of both an initial registration step 

between the MRI and SPECT images and a segmentation 

step between the MRI image and the anatomical class we 

are interested in. 

 There are three main "anatomical" types 

(tissues) found in the brain: white matter (), gray matter 

(), and cerebro-spinal fluid (). As a result of our model, 

we have defined the new cost function for deconvolution 

of the 3D image as follows: where the first summation is 

taken from these three anatomical types (tissues) and 

designates the mean, in gray levels, of the ith region, and 

is used to weight these anatomical constraints. For each 

spectra of the SPECT picture, voxels are proportional to 

variance within each anatomical region for each 

transverse slice. Within a recognized and segmented 

anatomical region, pixels in a functional image usually 

have the same gray level values. Edge-preserving 

regularisation is possible with this regularization term 

since it enables smoothness constraints to be applied 

without removing (anatomical) discontinuities. 

 This regularisation component does not change 

the convexity of the NAS-RIF cost function, ensuring a 

unique solution to the problem. According to Figure 2, 

this scheme is framed within a framework. This function 

calculates the cost of a SPECT scan using (high-

resolution) MRI data with the result of dividing the MRI 

volume into anatomical classes. 

 (7) shows the first derivative of the cost 

function. Every entry is written as follows: With respect 

to, the gradient vector is: 

 A gradient-based iterative restoration procedure 

can be used to minimise this convex cost function. Due to 

the quadratic nature of the suggested criterion, alternative 

optimization techniques can be applied as well. 

 NAS-RIF algorithm requires the Kronecker 

delta function [10] as its first inverse FIR filter. Also, our 

choice was based on the fact that the background of the 

SPECT image is not entirely black [4]. 

 We define the final convergence condition of the 

proposed algorithm as the stability of the cost function 

minimization, where is a threshold commonly used in our 

application, and where n represents the number of 

iterations. Using the gradient descent procedure in Figure 

8, a change in the cost function value is depicted in 

Figure 3. 

 Anatomically based regularisation is defined 

using a 3D registration step between MRI and SPECT 

input volumes (from the same patient) [11, 12], followed 

by a Markovian segmentation of the MRI 3D image into 

anatomical classes [9]. The following sections describe 

the process (see Section 3.2.). 

 

Segmentation and enrollment 

 Our anatomically based regularisation term is 

defined by unsupervised Markovian segmentation of the 

(registered) MRI 3D picture into anatomical classes using 

the result of the 3D registration step between the MRI 

and SPECT input volumes. 

 

Enrollment 

 In [12], we explain how we used mutual 

information to register 3D objects in our application. As 

the maximum value of MI registration criterion between 

MRI and SPECT volumes specifies the amount of 

information in the joint histogram of the images, it 

produces the best match of intensity correspondences 

between the images for registration. Maximising [13] is 

used to discover the best set of registration parameters, 

after estimating the vector using Powell's method. In 

order to speed convergence, the cost function is slightly 

smoothed, which will decrease the likelihood of finding 

undesirable local minima (due to incorrect registration). 

The code used to register the MR picture with the SPECT 

picture was heavily influenced by the software program 

Statistical Parametric Mapping (SPM)[14]. (View Figure 

7.) 

 

A method for segmenting the volume of an MRI 

 This involves using two random fields, where 

represents the label field and represents the field of 

observations on the 3D lattice of sites (voxels) associated 

with class labels of segmented 3D images. There are 

three categories of brain "tissue" labeled above, each 

corresponding to an area of the 3D brain image. Tissues 

that absorb no trace amounts of a tracer are grouped 

together with CSF and extra-cerebral tissues. Although 

there is nonzero tracer presence in the skin and other 

external structures (there is blood flow), we believe it has 

no practical significance. It is the CSF area (intracerebal 

ventricles and peri-cerebral cysterns) that refers to the 

immediate environment of the brain and areas that are 

genuinely unresponsive. Gray matter (the brightest area) 

and white matter (the dullest area) have different patterns 

of blood flow [15]. There is a value for each (grey 

levels), and there is a value for each (white levels). The 

distribution of (designates the gray level intensity 

associated with the site) is defined using a prior 
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distribution assumed to be Markovian and site-wise 

conditional likelihoods. 

 

During the estimation process, there are several steps 

 The likelihood of the sample is estimated using 

three Gaussian laws and the Iterative Conditional 

Estimation (ICE) technique [16]. 

 A markerovian segmentation of the MR volume 

can be calculated unsupervised using estimates provided 

by the ICE process. As an example of a global Bayesian 

formulation of a statistical labeling problem, Markovian 

segmentation can be viewed as maximizing the posterior 

energy [17]: expressing the adequacy between 

observations and labels and representing the energy of 

the a priori Pott model (which tends to favor 

homogeneous regions without privileged orientations). A 

deterministic Iterated Conditional Modes (ICM) 

algorithm is used to reduce this global energy function. 

ML segmentation is used as the initialization for this 

approach, which uses the segmentation map produced by 

ML. A support value is then calculated based on pixels 

belonging to the CSF, white matter, and gray matter 

classes. The figures 5 and 6 illustrate this point. 

 

Authentication 

A method for acquiring and reconstructing SPECT 

data 

 We captured the SPECT images with a triple-he

ad gamma camera (Picker Prism, Cleveland, OH, USA) u

sing low-energy, high-resolution parallel-hole collimators

. A 360° field of view was obtained by obtaining SPECT 

projections every few seconds. Ethylene Cysteinate Dime

r (TC-ECD) was used as the radioisotope. 

 

Data collection for MRIs 

 An MRI picture was obtained using a 3D-FISP o

n a Siemens Magnetom Avanto T scanner. The excitation 

method used was nonselective. There were 512 512 voxel

s per slice and TR = ms, TE = ms, and scanning paramete

rs were TR = ms, TE = ms, and. We further processed the 

3D MRI images by varying BET's fractional intensity thr

eshold to separate the brain from other tissues using the b

rain extraction tool (BET) [18] of the MRI programme. 

 

Prototype Validation Protocol for Phantom 

 A total of two imaging phantoms were used to te

st the efficiency of our SPECT image restoration techniq

ue (i) 

SPECT imaging was used to scan the Hoffman 3D Brain 

Phantom [19] while it was carrying MBq of activity. To 

match as closely as possible the MRI image's slice orient

ation, the phantom was oriented according to its slice orie

ntation. Data from phantom SPECT included slices with 

voxel dimensions of . An MRI Phantom data set contains 

mm isotropic voxel slices. An illustration of the Hoffman 

phantom's transversal slices is given in Figure 1. A spher

e of varying diameters (diameters 1, 2, 3, 4, 5, and 6 mm) 

composes the other phantom. Spheres filled with a radioa

ctive solution were compared with a less concentrated rad

ioactive solution present in background in one scenario, r

esulting in an activity concentration ratio of approximatel

y. A low-activity solution was used in the cylinder, and n

onradioactive water was used in the spheres. Data from th

e phantom SPECT showed the following voxel dimensio

ns. Slices of isotropic mm-sized voxels were included in t

he Phantom MRI data. Figure 1 [20] shows transaxial slic

es of the phantom (Deluxe ECT). 

 Despite being a quick and easy means of 

assessing the effectiveness of a technique, visual 

inspection is obviously an inadequate measurement. 

Based on the improvement in signal-to-noise ratio 

(ISNR), measured in decibels (dB), the degraded 

phantom image, the ground truth and restored phantom 

images are used to calculate the performance metric. In 

this case, the restored phantom image corresponds to the 

quadratic norm. Based on the ISNR, we can calculate the 

reflection coefficient by adding the degraded phantom 

picture, the original (ground truth) phantom image, and 

the restored phantom picture. In our case, the original 

object was the MRI phantom, and each compartment's 

radioactivity concentration was also known; therefore, 

this measure is only useful if the original object is 

known. 

 A unique evaluation criteria from [22, 23] was 

also applied to restore images based on the assessment of 

the four following parameters. 

  In the white and gray matter regions, and are the 

means of the pixel values, respectively, for the image's 

overall contrast [22]. 

  Using the mean gray level value inside the 

sphere and the mean gray level value outside the sphere 

(in a circle centered around the sphere and whose radius 

equals half the distance between the centers of the 

spheres in the image), one can define the local contrast of 

the picture [23]. 

 As shown in [22], the white matter region 

represents the standard deviation of pixel values within 

this region. 

 As a final example, we can take a look at the 

mottle in the gray matter region of the image [22], 

defined as, where the standard deviation of the pixel 

values in this region is (iv). 

In a consistent area of the SPECT volume, these two 

measurements can be used to assess whether noise has 

been amplified and/or if unwanted artefacts have been 

introduced by the restoration process. Total mottle was 

calculated by adding pixels from white and gray matter 

areas, respectively, to calculate the percentage of pixels 

in each. Each category of brain anatomical tissue has a 

different number of pixels. An effective SPECT image 

restoration technique improves image contrast while 

minimizing mottle. Alternatively, we can determine if 

contrast enhancement was significant for a particular 

maximal mottle measure [22]. 
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Supervised Metz Restoration Filter compared to the 

evaluation 

 By comparing our method to the traditional 

Metz filter deconvolution method, we were able to 

demonstrate the advantages of this unsupervised, blind 

deconvolution method [24]. In order to restore images 

using Metz filters, you need to understand the point 

spread function (PSF) of the imaging system. Inverse 

filtering and low pass filtering are combined in the filter. 

By using this filter, it is possible to deconvolve SPECT 

images while decreasing extremely high frequencies (i.e., 

noise caused by inverse filtering). Metz filters have two 

parameters that can be adjusted: their size and their order 

(full width at half maximum). 

 

Results of the experiment 

 The clinical data from 30 epileptic patients' MRI 

and SPECT scans were restored. In each set of SPECT 

data, voxel slices had the following dimensions: and. 

Data sets with MRI showed slices of voxels with voxels 

of size. In this section, several examples are provided 

from this category. 

 MRI technology was used to separate the brain 

from other tissues before registration and restoration. 

Fractional intensity threshold for BET was set at. The 

empirical selection of this value was based on visual 

assessments of a number of test runs. 

 In Figure the ISNR variance of processed 

phantom pictures is illustrated for a variety of FWHM 

parameters as well as for the optimal value. FWHM = 

mm or ISNR dB was found to be the best restoration 

value based on ISNR comparisons for various FWHM 

values. 

The average contrast and total mottle were first 

quantified and compared with the Metz filter on a 

collection of (human brain) degraded and restored 

SPECT images. The suggested approach led to an 

increase in mottle and global contrast with the 

appropriate factor. By boosting global contrast and 

mottling by and respectively, the Metz filter boosted 

global contrast and mottling. 

 In Table 1, you will find comparable results for 

SPECT phantoms. We selected the weighting factor for 

the studies we examined because SPECT images do not 

have a completely black backdrop [4]. A series of tests 

was conducted to determine this value, then the interval 

was altered to arbitrarily select it.

Table 1: Using the restored image with or without, the Metz filter, and the original phantom SPECT, they compute 

the global contrast and mottle (expressed in %), as well as the improvement in signal-to-noise ratio (expressed in dB). 

 with 
J4(u) 

  Metz 
filter 

  without 
J4(u) 

 

 CG M ISNR CG M ISNR CG M ISNR CG M 

Hoffman 29.5 26.3 0.720 24.0 21.1 0.421 20.3 18.9 0.299 18.3 18, 4 

Cold spheres 27.3 37.5 0.679 21.8 33.4 0.399 20.6 27.6 0.241 18.1 27.1 

Hot spheres 28.9 39.8 0.670 21.2 34.2 0.386 20.1 28.5 0.227 17.4 27.5 

 

Table 2: Anatomical contrast (expressed in %) obtained from the restored image with and without the correct 

anatomical information 

Cold Spherei 1 2 3 4 5 6 

CL (with partial anatomical errors) 23.8 21.1 18.4 15.7 11.7 6.7 

CL (with anatomical information correct) 24.4 20.6 16.9 15.9 10.5 7.9 

 

Table 3: Local contrast (expressed as a percentage) with the correct anatomical information obtained from restored 

and degraded phantom SPECT images, respectively. 

 Restored images  Degraded 

Cold sphere with 
J4(u) 

Metz filter withou
t J4(u) 

image 

 CL CL CL CL 

1 24.4 18.2 17.1 15.4 

2 19.6 17.7 15.9 13.1 

3 16.9 13.3 12.2 10.3 

4 15.8 11.4 10.0 8.8 

5 10.4 8.1 7.0 5.1 

6 7.9 5.6 4.1 3.1 
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Figure 1: 

Phantoms sliced transaxially. An MRI with a Hoffman phantom (a). A Hoffman phantom SPECT is shown in (b). Phantom 

cylindrical MRI (c). SPECT with hot spheres on a cylindrical phantom (d). A cylindrical phantom MRI is shown in (e). An 

imaging technique involving cylindrical phantoms with cold spheres (f) 

 
 

Examples of MRI cross-section images of human brains. From left to right: Original MRI cross-sectional images of 

human brains; and from right to left: Unsupervised three-dimensional Markovian segmentations. 

 
 

DISCUSSION 

 Using an experimenter to set the fractional 

intensity threshold, our restoration process was less 

susceptible to it (i.e., the contrast value remained 

stationary for when the threshold level changed from to ). 

The parameter that produced the best results across all 

thirty pairs of MRI scans has been chosen as the best 

value. 

As opposed to our restoration approach, which assumes 

that noise is additive, noise is actually a multiplicative 

Poisson process. As a result, it is striking to see the 

results when actual SPECT/MRI data is used. 

(Multiplicative) Poisson and (additive) Gaussian noise 

differences do not seem to significantly affect the 

effectiveness of the algorithm at high count levels. It is 

important to conduct clinical studies utilizing ROC 

analysis in order to accurately assess the effectiveness of 

this restoration technique. These clinical studies will be 

discussed in another medical article. 

  We were able to increase signal-to-noise ratio 

by more than doubling what could have been achieved 

with a Metz filter. In light of the improvements in global 

contrast, ISNR, and local contrast measurement, which 

improve the ability of SPECT to detect focal 

abnormalities, the small increase in motility is not that 

big of a deal. Moreover, while our prior knowledge 

steered the restored image, noise from deconvolution 

operations didn't amplify the restored image. 
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Based on a GHz PC workstation running Linux, our 

method took about minutes to compute versus minutes 

for the Metz filter. The computational complexity of our 

method despite not requiring a PSF parameter makes it 

unsupervised. 

 Spect rCBF trials require MRI scans, which are 

another disadvantage of our approach, but from a clinical 

standpoint, they are a real necessity for most participants. 

In order to ensure the accuracy of the final restoration, 

the registration process must be of high quality. You can 

also find several more highly accurate registration 

techniques in many more places. 

 

CONCLUSION 

 A reliable restoration technique for SPECT 

pictures was presented in this article that incorporates 

anatomical and functional information. It should be 

useful to doctors interpreting 3D SPECT scans of the 

human brain to use this technique in order to improve the 

high quality of these images. A high-resolution image 

such as a CT scan (or an MRI examination) is used to 

determine each subject's anatomical details. The 

proposed constraint term allowed for the generation of a 

better constraint on the resolution of our restoration 

problem as well as stability of the inverse solution of the 

NAS-RIF method by preventing noise amplification. As 

soon as these terms were registered to the subject's 

SPECT volume, those homogeneous anatomical regions 

reported in the high-resolution MRI scan could then be 

reconstructed into the SPECT image. In a variety of 

SPECT/MRI couples, this technique was tested for its 

effectiveness and reliability. Because it is a data-driven 

method, this fully automated 3D blind restoration method 

can be used for a wide range of 3D SPECT tests.

 

 

REFERENCES: 

1. P. Calvini, A. M. Massone, F. M. Nobili, and G. (2006). Rodriguez, “Fusion of the MR image to SPECT with possible 

correction for partial volume effects,” IEEE Transactions on Nuclear Science, vol. 53, no. 1, pp. 189–197,  

2. H. Rajabi, A. Bitarafan Rajabi, N. Yaghoobi, H. Firouzabad, and F. Rustgou, (2005). “Determination of the optimum 

filter function for Tc99m-sastamibi myocardial perfusion SPECT imaging,” Indian Journal of Nuclear Medicine, vol. 

20, no. 3, pp. 77–82,  

3. View at: Google Scholar 

4. M. Mignotte and J. Meunier, (2000). “Three-dimensional blind deconvolution of SPECT images,” IEEE Transactions 

on Biomedical Engineering, vol. 4, no. 2, pp. 274–281,  

5. D. Kundur and D. Hatzinakos, “A novel blind deconvolution scheme for image restoration using recursive 

filtering,” IEEE Transactions on Signal Processing, vol. 46, no. 2, pp. 375–390,  

6. G. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal, (1993). “Bayesian reconstruction of functional images using 

anatomical information as priors,” IEEE Transactions on Medical Imaging, vol. 12, no. 4, pp. 670–680,  

7. X. Ouyang, W. H. Wong, V. E. Johnson, X. Hu, and C. T. Chen, (1994). “Incorporation of correlated structural images 

in PET image reconstruction,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 627–640,  

8. S. Sastry and R. E. Carson, (1997). “Multimodality bayesian algorithm for image reconstruction in Positron Emission 

Tomography: a tissue composition model,” IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 750–761,  

9. J. Nuyts, K. Baete, D. Beque, and P. Dupont, (2005). “Comparison between MAP and postprocessed ML for image 

reconstruction in emission tomography when anatomical knowledge is available,” IEEE Transactions on Medical 

Imaging, vol. 24, no. 5, pp. 667–675,  

10. S. Benameur, M. Mignotte, J. Meunier, and J. P. (2006). Soucy, “An edge-preserving anatomical based regularization 

term for the NAS-RIF restoration of SPECT image,” in Proceedings of the 13th IEEE International Conference On 

Image Processing (ICIP '06), pp. 1177–1180, Atlanta, Ga, USA, October  

11. D. Kundur and D. Hatzinakos, (1996). “Blind image restoration via recursive filtering using deterministic constraints,” 

in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), vol. 4, pp. 

2283–2286, Atlanta, Ga, USA, May  

12. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal, (1995). “Automated multi-modality 

image registration based on information theory,” in Proceedings of the Information Processing in Medical Imaging 

Conference (IPMI '95), pp. 263–274,  

13. W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, (1996). “Multi-modal volume registration by 

maximization of mutual information,” Medical Image Analysis, vol. 1, no. 1, pp. 35–51,  

14. M. J. D. Powell, (1964) “An efficient method for finding the minimum of a function of several variables without 

calculating derivatives,” Computer Journal, vol. 7, no. 2, pp. 155–162,  

15. http://www.fil.ion.ucl.ac.uk/spm. 

16. D. C. Costa and P. J. (1991). Ell, Brain Blood Flow in Neurology and Psychiatry, Series Editor: P. J. Ell, Churchill 

Livingstone, London, UK,  

https://scholar.google.com/scholar_lookup?title=Determination%20of%20the%20optimum%20filter%20function%20for%20Tc99m-sastamibi%20myocardial%20perfusion%20SPECT%20imaging&author=H.%20Rajabi&author=A.%20Bitarafan%20Rajabi&author=N.%20Yaghoobi&author=H.%20Firouzabad&author=F.%20Rustgou&publication_year=2005
http://www.fil.ion.ucl.ac.uk/spm


Dr. Prakash kulithungan & Dr.Revanth V / American Journal of Oral Medicine and Radiology. 2019, 6(2), 51-58. 

 

58 | P a g e  
 

17. F. Salzenstein and W. Pieczynski,(1995). “Unsupervised Bayesian segmentation using hidden Markovian fields,” 

in Proceedings of the 20th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '95), 

vol. 4, pp. 2411–2414, Detroit, Mich, USA, May  

18. J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal Statistical Society, vol. 48, pp. 259–302, 

1986. 

19. S. M. Smith, (2002). “Fast robust automated brain extraction,” Human Brain Mapping, vol. 17, no. 3, pp. 143–155,  

20. http://www.mdanderson.org/education-and-research/departments-programs-and-labs/labs/pet-development-

laboratory/research/hotpet-human-camera/hotpet-brain-scan-images.html. 

21. http://guillemet.org/irene/equipe4/fantomes.html. 

22. M. R. Banham and A. K. Katsaggelos, (1997). “Digital image restoration,” IEEE Signal Processing Magazine, vol. 14, 

pp. 24–41,  

23. S. Webb, A. P. Long, R. J. Ott, M. O. Leach, and M. A. (1985). Flower, “Constrained deconvolution of SPECT liver 

tomograms by direct digital image restoration,” Medical Physics, vol. 12, no. 1, pp. 53–58,  

24. A. H. Vija, E. G. Hawman, and J. C. Engdahl, (2004). “Analysis of a spectosem reconstruction method with 3D beam 

modeling and optional attenuation correction: phantom studies,” in Proceedings of the IEEE Medical Imaging 

Conference (MIC '04), pp. 2662–2667, October  

25. C. E. Metz and R. N. (cs1974). Beck, “Quantitative effects of stationary linear image processing on noise and resolution 

of structure in radionuclide images,” The Journal of Nuclear Medicine, vol. 15, no. 3, pp. 164–170,  

 

Cite this article:  

Dr. Prakash kulithungan & Dr. Revanth V. An Information fusion between physiology and anatomy approach to restoring 

Images obtained with SPECT-MRI.  American Journal of Oral Medicine and Radiology, 2019, 6(2), 51-58.  
 
 

 

 
Attribution-NonCommercial-NoDerivatives 4.0 International 

 

http://www.mdanderson.org/education-and-research/departments-programs-and-labs/labs/pet-development-laboratory/research/hotpet-human-camera/hotpet-brain-scan-images.html
http://www.mdanderson.org/education-and-research/departments-programs-and-labs/labs/pet-development-laboratory/research/hotpet-human-camera/hotpet-brain-scan-images.html
http://guillemet.org/irene/equipe4/fantomes.html

