ENJER

European Journal of Environmental Ecology

Journal homepage: www.mcmed.us/journal/ejee

ESTIMATION OF HAZARDOUS AIR POLLUTANTS IN BHILAI INDUSTRIAL AREA

Manish Upadhyay* and N.Jayshree

Department of Chemistry, C.V.Raman University, Kota, Bilaspur, Chattisgarh, India.

Corresponding Author	Article Info
Manish Upadhyay	Received 13/03/2015; Revised 29/04/2015;
Email:- man_bsp@rediffmail.com	Accepted 11/05/2015

ABSTRACT

An investigation was undertaken to study the pollution levels in the industrial area bhilai in durg district. The Presence of number of power plants & various industries in Bhilai area gave a support for the existence of Environmental problem in this area. Many industrial emissions from existing Thermal power plants, coal & sponge iron plant were being continuously released in to the atmosphere. This paper presents ambient air quality of villages in Bhilai area. Four different villages (Khursipar, Maroda, Bhilai-3, Utai) were selected for the study and compared. The parameters studied were Particulate matter (PM₁₀, PM₂₅), Sulphur Dioxide, Nitrogen Oxides and Ammonia. The results were compared with National Ambient air Quality Standards-NAAQS-009, Environment(Protection) seventh amendment rules - 2009), A Gazette notification released by Ministry of Environment and Forests, Government of India.

Keywords: parameters, prescribed limit, Central Pollution control Board.

INTRODUCTION

Air pollution may be described as contamination of the atmosphere by gaseous, liquid, or solid wastes or by-products that can endanger human health and welfare of plants and animals, attack materials, reduce visibility, or produce undesirable odors. Although some pollutants are released by natural sources like volcanoes, coniferous forests, and hot springs, the effect of this pollution is very small when compared to that caused by emissions from industrial sources, power and heat generation, waste disposal, and the operation of internal combustion engines. Fuel combustion is the largest contributor to air pollutant emissions, caused by man, with stationary and mobile sources equally responsible. The Presence of number of power plants & various industries in Bhilai industrial area gave a support for the existence of Environmental problem in this area. Many industrial emissions from existing Thermal power plants, coal & Bauxite mines were being continuously released in to the atmosphere. So the Ambient air analysis has been carried out in the villages of Bhilai industrial area at various Sampling points for various Air Pollutants like Particulate matter (PM10,PM2.5), Sulphur Dioxide, Nitrogen oxides and Ammonia.

Study Area

Bhilai industrial area is part of Durg Dist. situated at 25.22' N and 85-42'E latitude with the 304.8 meter above sea level. The ambient air quality of Korba surrounding Area is continuously degrading due to industrial activities. Therefore, we have decided to analyze the ambient air quality of the study area, so that some remedies for the improvement could be possible.

Sample Collections

Ambient air samples were collected from four different area of Bhilai industrial area of Durg district during the pre-monsoon season (March-April 2015) using standard methods of Indian standard and CPCB guidelines and analyzed in laboratory for different pollutants.

Manish Upadhyay and Jayshree. / European Journal of Environmental Ecology. 2015;2(2):105-107.

Pollutant	Source (s)	Effects	
Particulate Matter (PM10,PM2.5)	Diesel engines, power plants, steel industry, flour mills, windblown dust and wood stoves	damage crops, lung damage, reduce visibility, discolor buildings and statues, eye irritation	
Sulfur Dioxide	coal-burning power plants and industries, industrial boilers and processes, coal-burning stoves, refineries and heaters	eye irritation, dead aquatic life, lung damage, reacts in atmosphere resulting in acidic precipitation, deteriorate buildings and statues, and damage forests	
Nitrogen Oxides	Vehicles, industrial boilers, industrial processes, power plants, commercial and residential heaters, coal-burning stoves and natural gas pipelines.	lung damageforms acid rain, damaging forests, buildings, & statu- forms ozone and other pollutar (smog)	
Ammonia	Biological degradation of organic matter,(such as plants, animals)and chemical and microbial degradation of animal wastes, Bio mass burning, fertilizer plants, Coal based thermal power plants and accidental release.	Primary wet tissue (i.e. eyes, nose & throat) irritation and damage. Corneal and skin burns/blistering, intraocular pressure (glaucoma), coughing and pulmonary and laryngeal edema, chest pains, pinky or frothy sputum.	

The various parameters were analyzed and health effects of chemical parameters are reported given below.

Particulate matter(PM10,PM2.5) in ambient air were sampled and analyzed as per IS 5182, (Part IV) and followed Central Pollution Control Board guide lines(Gravimetric method), Sampling and analysis of Sulphur dioxde were done by following the method IS:5182,(part-II,West & Gaeke method), Sampling and analysis of Nitrogen Oxides were done by following the method IS:5182(Part-VI,Sodium Arsenite method) and Sampling and analysis of Ammonia were done by following the method EPA ISC Part-II method-401(Indophenol blue method).

RESULTS AND DISCUSSION

In this study we selected four area in Bhilai industrial area, those are Khursipar, maroda, Bhilai-3 and

Utai, these Area are nearer to many Coal based sponge iron and thermal Power plants.

In the above said area we collected air samples by following standard methods. Collected samples were analyzed for different pollutants like Particulate matter (PM10, PM2.5), Sulphur Dioxide, Nitrogen Oxides and Ammonia.

The concentration levels of different pollutants were compared with National Ambient air Quality Standards-NAAQS-2009, (Environment (Protection) seventh amendment rules - 2009), A Gazette notification released by Ministry of Environment and Forests, Government of India and the results and observations were given below.

Table 1. Particulate Matter PM

I IVI 10				
S.No	Name of the Area	Unit	Concentration of PM10	CPCB Standard Limit
1	Khursipar	µg/m3	70.2	100
2	Maroda	µg/m3	71.5	100
3	Bhilai-3	µg/m3	73.4	100
4	Utai	µg/m3	71.9	100

PM_{2.5}

S.No	Name of the Area	Unit	Concentration of PM2.5	CPCB Standard Limit
1	Khursipar	µg/m3	45.7	60
2	Maroda	µg/m3	49.9	60
3	Bhilai-3	µg/m3	45.7	60
4	Utai	µg/m3	54.1	60

Table 2. Sulphur dioxide

S.No	Name of the Area	Unit	Concentration of SO2	CPCB Standard Limit
1	Khursipar	µg/m3	62.9	80
2	Maroda	µg/m3	65.2	80
3	Bhilai-3	µg/m3	58.6	80
4	Utai	µg/m3	66.9	80

Table 3. Nitrogen Oxides

S.No	Name of the Area	Unit	Concentration of NOx	CPCB Standard Limit
1	Khursipar	µg/m3	53.6	80
2	Maroda	µg/m3	55.5	80
3	Bhilai-3	µg/m3	53.6	80
4	Utai	µg/m3	64.9	80

Table 4. Ammonia

S.No	Name of the Area	Unit	Concentration of NH3	CPCB Standard Limit
1	Khursipar	µg/m3	34.9	400
2	Maroda	µg/m3	33.5	400
3	Bhilai-3	µg/m3	33.1	400
4	Utai	µg/m3	35.2	400

CONCLUSION

By Observing the above results, we can easily conclude that concentration of estimated pollutants are within the prescribed limit of Central Pollution control Board, But except Ammonia Rest of the pollutants (i.e. Particulate matter (PM10,PM2.5), Sulphur dioxide and Nitrogen Oxides) are nearer to the prescribed limit of Central Pollution Control Board.

REFERENCES

- 1. IS: 5182 Part II. (2001) and NAAQS Monitoring & Analysis Guidelines Volume-I, Improved West and Gaeke method.
- 2. IS: 5182 Part VI. (2006). Analysis Guidelines Volume-I, Modified Jacob and Hochheiser Method.
- 3. Central Pollution Control Board Procedures for the Measurements of Air Pollution. Available at: http://cpcb.nic.in/upload/NewItem_196_NAAQMS_Volume-I.pdf
- 4. APHA. (2004). 2nd Edition. Available at: http://ajph.aphapublications.org/doi/book/10.2105/9780875530024.
- 5. NAAQS. (2009). Gazette notification Govt of India. Available at: http://envfor.nic.in/sites/default/files/Press%20Note%20on%20RNAAQS_0.pdf
- 6. James P.Lodge. (1988). Methods of Air sampling & analysis-3rd edition, ISBN-13: 978-0873711418, ISBN-10: 0071232303.
- Robert Jennings Heinsohn and Robert Lynn Kabel. (1999). Sources and control of air pollution, Available at: https://books.google.co.in/books/about/Sources_and_Control_of_Air_Pollution.html?id=miFSAAAAMAAJ&redir_esc= v
- 8. Roberts E Alley & Associates. (1988). Inc Air Quality Control Handbook, ISBN-13: 978-0071117401, ISBN-10: 0070014116.
- 9. Rao MN and Rao HVN. (2000). Air Pollution, Tata McGraw Hill Publishing Co Ltd. New Delhi .
- 10. Roy. M. Horrison. (1986). Hand book of Air Pollution analysis, ISBN-10: 0412244101, ISBN-13: 978-0412244100.