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 ABSTRACT 

This paper the model that has been developed so far is for two phase machine Three phase 

induction machine are common: [1]-[3]two phase machine are rarely used in industrial 

application . a dynamic model for the three phase induction machine can be derived from 

the two phase machine if the equivalence between three and two phase is established .The 

equivalence is based  on the equality of the MMF  produced  in the two phase and three 

phase winding and equal current  magnitudes. Shows simulation results are compared. 

 

INTRODUCTION 

 This transformation could also be thought of as a 

transformation from three (abc) axes to three new 

(dqo)axes for uniqueness of the transformation from  one 

set of axes to another set of axes, including unbalances in 

the abc variables requires three variables such as the 

dq0.[4]The reason for this is that it is easy to converter 

from three abc variables to to qd variables if the abc 

variables have an inherent relationship among themselves, 

such as the equal phase displacement and magnitude.  

Therefore, in such a case there are only two independent 

variables in a,b,c: the  third is a  dependent variable 

obtained  is unique under that circumstance 

This paper the variable s have no such inherent 

relationship, then there are three distinct and independent 

variables: Hence the third variable cannot be recovered 

from the knowledge of the other two variables only[5] .It 

is also mean that they are not recoverable from two 

variables qd but require another variable such as the zero 

sequence component, to recover the[7] abc variables from 

the dq0 variables. 
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THREE PHASE(a,b,c) to TWO 

PHASE(d,q,0)TRANSFORMATION 

In electrical engineering, direct–quadrature–zero 

(abc) transformation or zero–direct–quadrature (dqo) 

transformation is a mathematical transformation that 

rotates the reference frame of three-phase systems in an 

effort to simplify the analysis of three-phase circuits. In 

the case of balanced three-phase circuits, application of 

the dqo transform reduces the three AC quantities to 

two DC quantities. Simplified calculations can then be 

carried out on these DC quantities before performing the 

inverse transform to recover the actual three-phase AC 

results. It is often used in order to simplify the analysis of 

three-phase synchronous machines or to simplify 

calculations for the control of three-phase inverters. The 

power-invariant, right-handed dqo transform applied to 

any three-phase quantities (e.g. voltages, currents, flux 

linkages, etc.) is shown below in matrix form. 

 

 
. 
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The inverse transform is: 

 
 

A. Geometric Interpretation 

 The dqo transformation is two sets of axis 

rotations in sequence. We can begin with a 3D space 

where a, b, and c are orthogonal axes. 

 
 

If we rotate about the axis by -45°, we get the following 

rotation matrix: 

 
 

which resolves to 

 
 

With this rotation, the axes look like 

 
 

Then we can rotate about the new b axis by  

): 

, 

Which resolves to 

. 

 
When these two matrices are multiplied, we get the Clarke 

transformation matrix C: 

 
 

 
This is the first of the two sets of axis rotations. 

At this point, we can relabel the rotated a, b, and c axes 

as α, β, and z. This first set of rotations places the z axis an 

equal distance away from all three of the original a, b, 

and c axes. In a balanced system, the values on these three 

axes would always balance each other in such a way that 

the z axis value would be zero. This is one of the core 

values of the dqo transformation; it can reduce the number 

relevant variables in the system. 
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The second set of axis rotations is very simple. In 

electric systems, very often the a, b, and c values are 

oscillating in such a way that the net vector is spinning. In 

a balanced system, the vector is spinning about the z axis. 

Very often, it is helpful to rotate the reference frame such 

that the majority of the changes in the abc values, due to 

this spinning, are canceled out and any finer variations in 

become more obvious. So, in addition to the Clarke 

transform, the following axis rotation is applied about 

the z axis: 

 
Multiplying this matrix by the Clarke matrix results in the 

dqo transform: 

. 

The dqo transformation can be thought of in geometric 

terms as the projection of the three separate sinusoidal 

phase quantities onto two axes rotating with the same 

angular velocity as the sinusoidal phase quantities. The 

two axes are called the direct, or d, axis; and the 

quadrature or q, axis; that is, with the q-axis being at an 

angle of 90 degrees from the direct axis. 

 

 
 Shown above is the dqo transform as applied to 

the stator of a synchronous machine. There are three 

windings separated by 120 physical degrees. The three 

phase currents are equal in magnitude and are separated 

from one another by 120 electrical degrees. The three 

phase currents lag their corresponding phase voltages 

by . The d-q axis is shown rotating with angular velocity 

equal to , the same angular velocity as the phase 

voltages and currents. The d axis makes an 

angle  with the A winding which has been 

chosen as the reference. The currents  and  are 

constant DC quantities. 

  
SIMULATION RESULTS 

Fig 1. Simulate three phase to two phase transformation 
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Fig 2. Simulate the voltage &current 

 
 

Fig 3. Simulate the Vd & Vq voltage 

 
 

Fig 4. Simulate the three phase voltage Vabc 
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Fig 5.Simulate the three phase voltage  Vabc1 

 
 

CONCLUSION 

 This paper presented two phase machine is rarely 

used in industrial application. a dynamic model for the 

three phase induction machine can be derived from the 

two phase machine if the equivalence between  three  and  

 

two phase is established .the equivalence is based  on the 

equality of the MMF  produced  in the two phase and three 

phase winding and equal current  magnitudes. Shows the 

simulation results are compared. 
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