

INTERNATIONAL JOURNAL OF ADVANCES IN CASE REPORTS

e - ISSN - 2349 - 8005

Journal homepage: www.mcmed.us/journal/ijacr

SCREENING/SPOT/COLOUR TEST OF ANTI-CHOLINERGICS

A. K. Jaiswal^{1*}, Kamna Sharma², Neelam Singh¹, S. Lukose², Tabin Millo¹

¹Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi- 110029, India. ²Department of Forensic Science, Galgotias University, Greater Noida, U.P, India.

> Corresponding Author:- A. K. Jaiswal E-mail: ashokjaiswal72@gmail.com

Article Info	ABSTRACT
Received 05/10/2014	Anticholinergic are class of drugs that blocks the neurotransmitter acetylcholine in the central and
Revised 12/10/2014	peripheral nervous system. In India, Forensic Science Laboratories run by Government under the
Accepted 22/10/2014	Home ministry usually carry out this for forensic investigation. The samples have to be analyzed by
I I I I I I I I I I I I I I I I I I I	the forensic toxicologist/chemists/scientist. This article deals with the screening/spot/colour test for
Key words:	different Anticholinergic. It attempts to simplify the standard procedures in a step-wise manner,
Anticholinergic,	which can be of handy reference for the forensic toxicologist/chemist. It is in continuation to
Screening, Spot test	toxicology manual series article-XVIII,Screening/spot test of Aphrodisiacs (Sex drugs)
etc.	Vol4,No3,Jan-July 2012 published in International Journal of Medical Toxicology and Legal
	Medicine.

INTRODUCTION

Anticholinergics are also known as cholinergic blocking agents or parasympatholytics. It affects the CNS and blocks the action of acetylcholine transmitter. It focuses on parasympathetic nervous system and acts as resting and reparative functions which includes digestion, excretion, cardiac and anabolism. Most of these drugs interact with muscarinic receptors in the brain, secretary gland, brain and smooth muscles. It produces the following effects:

- Decreased cardiovascular response
- Decreased respiratory tract secretions

• Decreased oral secretions, decreased sweating and relaxation of urinary bladder.

- Increased body temperature
- Ataxia, loss of co-ordination

Classification of Anticholinergics based on the receptors is given in Table 1.

Sl.no	Anti-muscarinic agents	Anti-nicotininc agents
1	It operates on the muscarinic acetylcholine receptors.	It operates on the nicotinic acetylcholine receptors.
2	It is used in gastrointestinal(GI), genitourinary (GU) and	It is used in increased blood pressure and in emergency
	respiratory disorders and Parkinson's disease.	situations in case of aortic dissection.
3	Examples: Atropine, hyoscine.	Examples: trimethophan, mecamylamine

Table1. Classification of anti-cholinergics based on the receptors

We have tried to set out standard procedures for screening/spot test for alkaloids which are easily available and useful for the forensic scientific laboratory. This article covers the spot test/colour test of anti-cholinergic like adiphenine, ambutonium bromide, atropine, atropine methobromide, atropine methonitrate, benzatropine, Benzilonium bromide, beperiden, caramiphen, chlorphenoxamine, cyclopentolate, cycrimine, diethazine, glycopyrronium bromide, hyoscine, isopropamide iodide, lachesine chloride, mepenzolate bromide, metixene, orphenadrine, penthienate methobromide, phenglutarimide, piperidolate, poldine metilsulfate, procyclidine, Tricyclamol chloride and tropicamide [1-10].

1. Adiphenine

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Brown colour is observed which indicates the presence of adiphenine.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Green to blue colour is observed which indicates the presence of adiphenine.

2. Ambutonium bromide

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Brownish orange colour is observed which indicates the presence of ambutonium bromide.

3. Atropine

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Reddish orange colour is observed which indicates the presence of atropine.

4. Atropine methobromide

Sodium hydroxide test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of nitric acid are added to it.
- 3. Solution is heated on a water bath for 1 min.
- 4. The solution is cooled and then three to four times diluted with water.
- 5. Few drops of sodium hydroxide are added to it.
- 6. Solution becomes colourless which indicates the presence of atropine methobromide.

5. Atropine methonitrate

Sodium hydroxide test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of nitric acid are added to it.
- 3. Solution is heated on a water bath for 1 min.
- 4. The solution is cooled and then three to four times diluted with water.
- 5. Few drops of sodium hydroxide are added to it.
- 6. Violet colour is observed which indicates the presence of atropine methonitrate.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Orange colour is observed which indicates the presence of atropine methonitrate.

6. Benzatropine

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.
- 3. Yellow colour is observed which indicates the presence of benzatropine.

Marquis test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.
- 3. Yellow colour is observed which indicates the presence of benzatropine.

7. Benzilonium bromide

Sulphuric acid test

- 1. Few drops of extract are taken on a white tile.
- 2. Few drops of sulphuric acid are added to it.
- 3. Orange colour is observed which indicates the presence of benzilonium bromide.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Play of colour from orange to green and finally to blue is observed which indicates the presence of benzilonium bromide.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Brown colour is observed which indicates the presence of benzilonium bromide.

8. Beperiden

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Reddish brown colour is observed which indicates the presence of beperiden.

Sulphuric acid test

- 1. Few drops of extract are taken on a white tile.
- 2. Few drops of sulphuric acid are added to it.

3. Orange to brown colour is observed which indicates the presence of beperiden.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Brown colour is observed which indicates the presence of beperiden.

9. Caramiphen

Sulphuric acid test

- 1. Few drops of extract are taken on a white tile.
- 2. Few drops of sulphuric acid are added to it.

3. Red colour is observed which indicates the presence of caramiphen.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Yellow colour is observed which indicates the presence of caramiphen.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Reddish orange colour is observed which indicates the presence of caramiphen.

10. Chlorphenoxamine

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Yellow to green colour is observed which indicates the presence of chlorphenoxamine.

11. Cyclopentolate

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.
- 3. Brown colour is observed which indicates the presence of cyclopentolate.

12. Cycrimine

Mandelin's test

1. One to two ml of extract is taken in test tube.

2. Few drops of mandelin's reagent are added to it.

3. Reddish brown colour is observed which indicates the presence of cycrimine.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Reddish brown colour is observed which indicates the presence of cycrimine.

13. Diethazine

Forrest test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of forrest reagent are added to it.

3. Red colour is observed which indicates the presence of diethazine.

Formaldehyde-sulphuric acid Reagent test

1. One to two ml of extract is taken in test tube.

2. Few drops of Formaldehyde-sulphuric acid reagent are added to it.

3. Reddish violet colour is observed which indicates the presence of diethazine.

FPN test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of FPN reagent are added to it.

3. Orange colour is observed which indicates the presence of diethazine.

14. Glycopyrronium bromide

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Black colour is observed which indicates the presence
- of glycopyrronium bromide.

15. Hyoscine

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Reddish orange colour is observed which indicates the presence of hyoscine.

16. Isopropamide iodide

Sodium Hydroxide test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of nitric acid are added to it.
- 3. Solution is heated on a water bath for 1 min.

4. The solution is cooled and then three to four times diluted with water.

5. Few drops of sodium hydroxide are added to it.

6. Solution becomes colourless which indicates the presence of isopropamide iodide.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Grey colour is observed which indicates the presence of isopropamide iodide.

17. Lachesine Chloride

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.
- 3. Orange to green colour is observed which indicates the presence of lachesine chloride.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Blue colour is observed which indicates the presence of lachesine chloride.

18. Mepenzolate bromide

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Brown colour is observed which indicates the presence

of mepenzolate bromide.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Orange colour is observed which indicates the presence of mepenzolate bromide.

19. Methanthelinium bromide

Mandelin's Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Orange colour is observed which indicates the presence of methanthelinium bromide.

Marquis test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Orange colour is observed which indicates the presence of methanthelinium bromide.

20. Metixene

Sulphuric acid test

1. Few drops of extract are taken on a white tile.

2. Few drops of sulphuric acid are added to it.

3. Orange colour is observed which indicates the presence of metixene.

Formaldehyde-sulphuric acid Reagent test

1. One to two ml of extract is taken in test tube.

2. Few drops of Formaldehyde-sulphuric acid reagent are added to it.

3. Orange colour is observed which indicates the presence of metixene.

Libermann's test

1. One to two ml of extract is taken in test tube.

2. Few drops of libermann's reagent are added to it.

3. Reddish orange colour is observed which indicates the presence of metixene.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Orange colour is observed which indicates the presence of metixene.

21. Orphenadrine

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Yellow to orange colour is observed which indicates the presence of orphenadrine.

Sulphuric acid test

- 1. Few drops of extract are taken on a white tile.
- 2. Few drops of sulphuric acid are added to it.

3. Orange colour is observed which indicates the presence of orphenadrine.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Orange colour is observed which indicates the presence of orphenadrine.

22. Penthienate methobromide

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Violet colour is observed which indicates the presence
- of penthienate methobromide.

Marquis test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.
- 3. Violet colour is observed which indicates the presence of penthienate methobromide.

Sulphuric acid test

- 1. Few drops of extract are taken on a white tile.
- 2. Few drops of sulphuric acid are added to it.

3. Orange colour is observed which indicates the presence of penthienate methobromide.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.
- 3. Violet colour is observed which indicates the presence
- of penthienate methobromide.

23. Phenglutarimide

Koppanyi - Zwikker test

- 1. The residue is extracted in 1 ml ethanol in a test tube.
- 2. One drop of 1% solution of cobalt nitrate in ethanol is added to it.
- 3. One drop of pyrrolidine is added to it.
- 4. Mixture is agitated for 2 mins.

5. Violet colour is observed which shows the presence of phenglutarimide.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.
- 3. Violet colour is observed which indicates the presence of phenglutarimide.

24. Piperidolate

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Orange colour is observed which indicates the presence of piperidolate.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Brown colour is observed which indicates the presence of piperidolate.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Orange to brown colour is observed which indicates the presence of piperidolate.

25. Poldine metilsulfate

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Blue colour is observed which indicates the presence of poldine metilsulfate.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Orange colour is observed which indicates the presence of poldine metilsulfate.

26. Procyclidine

Sulphuric acid test

1. Few drops of extract are taken on a white tile.

2. Few drops of sulphuric acid are added to it.

3. Yellow colour is observed which indicates the presence of procyclidine.

Marquis Reagent test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Violet colour is observed which indicates the presence of procyclidine.

Mandelin's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of mandelin's reagent are added to it.

3. Black colour is observed which indicates the presence of procyclidine.

27. Tricyclamol chloride

Marquis test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of marquis reagent are added to it.

3. Violet colour is observed which indicates the presence of Tricyclamol chloride.

Mandelin's test

1. One to two ml of extract is taken in test tube.

2. Few drops of mandelin's reagent are added to it.

3. Grey to violet colour is observed which indicates the presence of Tricyclamol chloride.

28. Tropicamide

Cyanogen bromide test

1. One to two ml of extract is taken in test tube.

2. Few drops of cyanogens bromide reagent are added to it.

3. Violet to Pink colour is observed which indicates the presence of tropicamide.

Libermann's test

- 1. One to two ml of extract is taken in test tube.
- 2. Few drops of libermann's reagent are added to it.

3. Yellow colour is observed which indicates the presence of tropicamide.

PREPARATION OF SOLUTIONS/ REAGENTS 1. Cyanogen bromide:

Solution (I): Decolourisation of bromine water is done by the addition of solid potassium cyanide and then more bromine solution is added until the solution becomes pale yellow. Solution(II): Saturated solution of aniline in water. solution (I) and (II) are mixed.

2. Formaldehyde-sulphuric acid: Four volumes of sulphuric acid and six volumes of formaldehyde solution are mixed.

3. Forrest reagent: Equal volumes of a 0.2 % (w/v) solution of potassium dichromate, 30 % (w/v) solution of sulphuric acid, 20 % (w/v) solution of perchloric acid and 50 % solution of nitric acid are mixed.

4. **FPN reagent:** 5 ml of 5 % (w/v) ferric chloride solution, 45 ml of 20 % (w/w) solution of perchloric acid and 50 ml of 50 % (v/v) solution of nitric acid are mixed.

5. **Libermann's reagent:** 1 gm of sodium or potassium nitrite is mixed in 10 ml of sulphuric acid with cooling and swirling to absorb the brown fumes.

6. **Mandelin's reagent:** 1 g of ammonium vanadate is dissolved in 1.5 ml of water and diluted to 100 ml with concentrated sulphuric acid.

7. Marquis reagent: 100 ml of concentrated sulphuric acid is mixed with 1 ml of 40% (v/v) formaldehyde solution.

CONCLUSION

In any analysis of poison, screening/spot test is very useful for knowing the presence of the anticholinergic which can be confirmed by the more confirmatory tests. It saves time for the toxicologist in ruling out the poisons which can be confirmed by the more confirmatory tests. It saves time for the toxicologist in ruling out the poisons and gives a quick clue to the doctors for patient management in emergency poisoning cases. The result of the analytical methods depends on the amount and purity of the sample extracted. The techniques are being improved every time. It is important for the forensic toxicologists to know the best available method and help to detect the poison in the crime investigations.

REFERENCES

1. Clarke EGC. (1986). Isolation & Identification of drugs, IInd edition, The Pharmaceutical press; London, 651.

- 2. Tiwari SN. (1976). Manual of Toxicology, Forensic Science Laboratory, Agra Ist Edn.
- 3. Parikh's Textbook of Medical Jurisprudence, Forensic Medicine & Toxicology. (2005). 6th Edition CBS Publishers & Distributors, New Delhi, 11, 1.
- 4. Reddy NS. (2005). Medical Jurisprudence & Toxicology, 1st edition, ALT Publications Hyderabad, 601.
- 5. Vogel AI. (1975). A Textbook of Quantitative Inorganic Analysis, 3rd Edn, The ELBS and Longman, Publishing CO, London.
- 6. Jungreis Ervim. (1984). Spot Test Analysis, John Wiley & Sons, New York.
- 7. Anonymous 1. http://www.healthline.com/health/anticholinergics, 2013.
- 8. Anonymous 2. http://emedicine.medscape.com/article/812644-overview, 2014.
- 9. Anonymous 3.http://www.webmd.com/lung/copd/anticholinergics-for-chronic-obstructive-pulmonary-disease-copd, 2014.
- 10. Tripathi KD. (2008). Essentials of Medical Pharmacology, 6th Edn, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, 106-109.