ANTI-DIABETIC AND HYPOLIPIDAMIC EFFECTS OF Costus igneus LEAVES EXTRACTS AGAINST STREPTOZOTOXIN INDUCED DIABETIC ALBINO RATS

N.Kanivalan¹, R.Rajakumar¹, P.Mani²*

¹Department of Zoology and Biotechnology A.V.V.M. Sri Pushpam College (autonomous), Thanjavur, Tamilnadu, India.
²Department of Plant Biotechnology, Sharmila Institute of Medicinal Products Research Academy (SIMPRA), Thanjavur, Tamilnadu, India.

ABSTRACT

The present study investigates the antidiabetic effect of leaf extract of Costus igneus on Streptozotocin (STZ) diabetic rats. The rats treated with Streptozotocin showed a significant increase in glucose level and altered level of lipid profile, hemoglobin and insulin were observed. The mechanism underlying STZ hyperglycemia in diabetes mellitus involves over-production (excessive hepatic glycogenolysis and gluconeogenesis) and decreased utilization of glucose by the tissues. Twenty-eight days administration of ethanolic extract of leaf of the Costus igneus (200 and 300mg/kg b.wt.) to diabetic rats resulted in significant reduction in blood glucose level, restored hemoglobin, lipid profile and insulin as compared to diabetic rats. The present study suggests that the Costus igneus leaves extracts had a synergetic hypoglycemic effect revealed by decreased serum lipid levels, restored insulin, hemoglobin and therefore attribute to therapeutic value of the Costus igneus extracts of leaves to combat the diabetic condition in rats. Among the two doses, 300mg/kg of Costus igneus leaves extract possess potential anti-diabetic activity.

INTRODUCTION

Diabetes mellitus is a complex and a multifarious group of disorders that disturbs the metabolism of carbohydrates, fat and protein. It results from shortage or lack of insulin secretion or reduced sensitivity of the tissue to insulin [1]. In 2007, the diabetes treatment market worldwide was worth over $25 billion, and had double-digit growth from the year before. According to the World Health Organization (WHO) the total number of people with diabetes was 171 million in 2000, and is projected to rise up to 366 million in 2030 [2].

Several drugs such as, biguanides and sulfonylureas are presently available to reduce side effects and thus searching for a new class of compounds is essential to overcome diabetic problems [3].

P.Mani
E-mail: master.maniji@gmail.com
plants have been scientifically studied. Therefore, the present study was carried out to evaluate the antidiabetic activity of *Costus igneus* leaves in Streptozotocin (STZ) induced diabetes and to probe into the mechanism of its antidiabetic property.

MATERIAL AND METHODS

Animals

Albino wistar male rats 7 – 8 weeks old, weighing 190-220 g, were used for the present study. Animals were housed under standard conditions of temperature (24±2°C) and relative humidity (30-70%) with a 12:12 light: dark cycle. The animals were fed with standard pellet diet (Chakan Oil Mills, Sangli) and water *ad libitum*. Animal handling was performed according to Good Laboratory Practice (GLP). Ethical clearance was obtained from Institutional Animal Ethics Committee and conducted according to the Indian National Science Academy guidelines for the use and care of experimental animals (CPCSEA/265).

Chemicals

Streptozotocin (STZ), Ethylene Diamine Tetra Acetic Acid (EDTA)), Glibenclamide (Prudence Pharma Chem, India), Chloroform were purchased for Sigma chemical company, Mumbai. All other chemicals and reagents used in this study was of analytical grade with high purity and were obtained from Glaxo laboratories and Sisco Research laboratories, Mumbai, India.

Plant materials

Fresh plant leaves of *Costus igneus* was collected from Kottyam District of Kerala and identified to confirm by the Taxonomist Botanical Survey of India, Tamilnadu, India.

Plant sample extraction

The leaves were cut into pieces and shade dried at room temperature. The dried leaves were subjected to size reduction to a coarse powder by using dry grinder and passed through sieve. 100 g of crushed leaves were continuously extracted with 95% ethanol using soxhlet up to 48 h. The extract was filtered and concentrated in rotatory evaporator at 35-40 °C under reduced pressure to obtain a semisolid material, which was then lyophilized to get a powder (28.5%, w/v).

Induction of Diabetes in Rats

After fasting, diabetes was induced by intraperitoneal (*ip*) injection of Streptozotocin dissolved in 0.1 M cold sodium citrate buffer, pH 4.5, at a dose of 55 mg/kg [9]. The control rats received the vehicle alone. The animals were allowed to drink 5% glucose solution overnight to overcome the drug induced hypoglycemia. After a week time for the development of diabetes, the rats with moderate diabetes having glycosuria and hyperglycemia (blood glucose range of above 250 mg/dl) were considered as diabetic rats and used for the experiment.

Experimental Design

The animals were divided into six groups of six animals each as follows. Each animal was marked for identification and regularly monitoring. The animals of normal control (Group I) were injected with citrate buffer alone. Group II served as diabeticogenic rats (Control). Group III and IV rats treated with *Costus igneus* leaves at a dose of 200 and 300mg/kg were orally given once a day for 4 weeks. Group IV rats treated with Glibenclamide at dose of 5mg/kg and served as reference stranded treatment continued for 4 weeks.

Collection of sample

After the termination of the experiment all the animals were anesthetized using ketamine chloride (24mg/kg bw) and sacrificed by cervical dislocation after an overnight fast. Blood was collected with and without EDTA. Plasma and serum were separated after centrifugation and used for various biochemical estimations.

Biochemical estimations

Serum glucose was estimated by the oxidase method [10]. The total cholesterol was estimated by the method of [11]. Triglyceride was estimated by the method of [12]. HDL cholesterol was separated by adding phosphotungsti magnesium chloride to the fresh samples to precipitate other lipoproteins and the HDL cholesterol was estimated. The concentration of LDL cholesterol was calculated by using the Friedwald formula and VLDL cholesterol was calculated by dividing the triglycerides value (in mg/dl) by 5. Heamoglobin estimated by the method. Plasma insulin was assayed by the solid phase system amplified sensitivity immunoassay.

Histological assay

On the 28th day, pancreatic tissues were taken from animals which were fasted overnight under ether anesthesia. The whole pancreas from each animal was removed after killing the animals, was placed in 10% formulation solution and immediately processed by the paraffin technique section of 5 µm thickness were cut and stained by haematoxylin and Eosin (H and E) for histological examination. The photomicrographs of histological studies are taken.

Statistical Analysis

All results are presented as mean ± SEM Data were analyzed by the student’s T test. Groups for the pair of observations depended upon each other. Results were
considered statistically at \(P < 0.001 \).

RESULTS

Estimation of Body Weight

The body weight changes in control and experimental groups were illustrated in Table 1. The body weight of diabetic rats significantly decreased when compared with control group. Supplementation of ethanolic extracts of *Costus igneus* showed a significant improvement in the body weight of diabetic rats. There were no significant changes observed between control treated group animals.

Estimation of Blood glucose, Plasma insulin and Hemoglobin

Table 2 shows the blood glucose plasma insulin and total hemoglobin levels of normal and experimental rats. There was a significant increased level of blood glucose and plasma insulin was observed in diabetes animals compared to the corresponding control group. Treatment with *Costus igneus* ethanolic leaves extract restored the levels of blood glucose and plasma insulin of diabetic group of rats and the effect was more pronounced in the group of rats treated with *Costus spicatus*.

Estimation of Serum Lipid Profile

As shown in Table 3 ethanolic extracts of *C. igneus* administration in diabetic rats serum lipids levels. The Triglycerides, Total cholesterol, VLDL, LDL increased and HDL levels were significantly decreased in STZ treated rats. Oral administration of *C. igneus* leaves ethanolic extract in 200 and 300mg/kg of body weight restored the altered parameters, which was compared to that of glibenclamide group. However, no significant changes were observed control treated groups.

Histological Assay

Multiple section of pancreas were taken and studied for histological changes in the plant extract-administered group and control group (Fig.1). Histological findings of pancreas in the extract-administered group and control group were tentatively similar. STZ-induced diabetic rats showed extensive damage on the islets of langerhans cells (Fig.2). The orally administered leaves extracts of *C. igneus* extracts(200 & 300 mg/kg) and commercial drug, Glibenclamide (100 mg/kg) (Fig.3 to 5) showed restoration of normal cellular population and enlarged size of beta cells with hyperplasia found in islets of langerhans cells in pancreas. The pancreas present in the group of animals treated with the extracts of *C. igneus* extracts(300 mg/kg) clearly showed that the partial restoration of normal cellular population and enlarged size of beta cells with hyperplasia on 30th day. The islets were normal in size, shape and number comparatively similar to that of standard treated drug (Fig.5).

Table 1. Effect of *C. igneus* ethanolic leaves extract on the changes of body weight of control and experimental rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Body weight (g)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (0 day)</td>
<td>Final (4 weeks)</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>198.22 ± 19.10</td>
<td>228.21 ± 19.01</td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td>187.13 ± 18.11*</td>
<td>149.11 ± 11.4*</td>
<td></td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus igneus (200 mg/kg bw)</td>
<td>182.04 ± 12.2</td>
<td>180.11 ±12.21*</td>
<td></td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus (300 mg/kg bw)</td>
<td>197.06 ± 19.43*</td>
<td>228.02±11.41**</td>
<td></td>
</tr>
<tr>
<td>Glibenclamide (5mg/Kg)</td>
<td>202 ± 11.25 **</td>
<td>225 ±12.35 **</td>
<td></td>
</tr>
</tbody>
</table>

Values are given as mean ± S.D (n=6 rats)
*P<0.01 Vs control; **P<0.001 Vs control by students‘t’ test.

Table 2. Effect of *Costus igneus* ethanolic leaves extract on the levels of blood glucose, plasma insulin and Hemoglobin in control and experimental rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucosel (mg/dL)</th>
<th>Plasma insulin (μg/mL)</th>
<th>Total Hemoglobin (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>85.45 ± 8.81*</td>
<td>7.24 ± 1.54</td>
<td>13.43 ± 1.35*</td>
</tr>
<tr>
<td>Diabetic</td>
<td>280.11 ± 19.33</td>
<td>4.24 ±0.13</td>
<td>8.93 ± 0.49</td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus (200 mg/kg bw)</td>
<td>108.12±4.57*</td>
<td>11.02±1.21*</td>
<td>12.87±0.45*</td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus igneus (300mg/kg bw)</td>
<td>90.01±3.12*</td>
<td>17.21±1.05*</td>
<td>13.99±1.58**</td>
</tr>
<tr>
<td>Glibenclamide (5mg/kg)</td>
<td>84.21 ±6.23</td>
<td>15.12±2.43**</td>
<td>13.88±3.12**</td>
</tr>
</tbody>
</table>

Values are given as mean ± S.D (n=6 rats)
* P<0.01 Vs control; **P<0.001 Vs control by students‘t’ test.
Table 3. Effect of *Costus igneus* ethanolic leaves extract on lipid profile in control and experimental rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TGL (mg/dl)</th>
<th>HDL-C (mg/dl)</th>
<th>VLDL-C (mg/dl)</th>
<th>LDL-C (mg/dl)</th>
<th>Total Cholesterol (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>75.15±5.03</td>
<td>38.6±1.83</td>
<td>15.03±1.06</td>
<td>41.9±4.37</td>
<td>96.16±6.44</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>124.32±6.5</td>
<td>42.56±5.52</td>
<td>32.14±1.7</td>
<td>96.47±3.2</td>
<td>215.2±7.4</td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus igneus (200 mg/kg bw)</td>
<td>97.52±4.67*</td>
<td>38.27±2.56</td>
<td>30.19±2.8*</td>
<td>88.41±2.34</td>
<td>172.3±5.*</td>
</tr>
<tr>
<td>Diabetic + ethanolic leaves extract of Costus igneus (300mg/kg bw)</td>
<td>91.49±2.45**</td>
<td>33.46±1.36*</td>
<td>25.52±3.4*</td>
<td>81.27±5.28*</td>
<td>152.6±6.9*</td>
</tr>
<tr>
<td>Glibenclamide (5mg/kg)</td>
<td>82.04±6.7*</td>
<td>25.38±4.75*</td>
<td>16.92±1.34*</td>
<td>33.9±2.66*</td>
<td>96.2±4.8*</td>
</tr>
</tbody>
</table>

Values are given as mean ± S.D (n=6 rats)
* P<0.01 Vs control; **P<0.001 Vs control by student’s ‘t’ test.

Table 3. Effect of *Costus igneus* ethanolic leaves extract on lipid profile in control and experimental rats

DISCUSSION

The present study investigates the antidiabetic effect of leaf extract of *C. igneus* on STZ diabetic rats. The fundamental mechanism underlying hyperglycemia in diabetes mellitus involves over-production (excessive hepatic glycogenolysis and gluconeogenesis) and decreased utilization of glucose by the tissues [13]. Twenty-eight days administration of ethanolic extract of leaf of the *Costus igneus* resulted in significant reduction in the fasting blood glucose level compared to diabetic rats. The difference observed between the initial and final fasting levels of different groups revealed a significant elevation in blood glucose in diabetic control group compared to normal. It is evident from these investigations that the leaf
extract is effectively maintaining the blood glucose levels in normal and STZ induced diabetic rats.

Ethanolic extract of *C. igneus* treated groups III, IV and aqueous solution of *C. igneus* treated groups V rats showed a significant (p < 0.00 1) increase in total cholesterol, triglycerides and low-density lipoprotein (LDL) cholesterol and very low-density lipoprotein (VLDL) cholesterol in serum compared with control. The plant extracts used in the study significantly (p < 0.00 1) decreased the levels of cholesterol, triglycerides, phospholipids, and LDL and VLDL cholesterol and (p < 0.001) increase HDL cholesterol.

This indicates that the leaf extract had favorable effects, on lipid metabolism of diabetic rats. Derangement of glucose, fat, and protein metabolism in diabetes results in the development of hyperlipidemia [14]. Significant lowering of total cholesterol is a very desirable biochemical state for the prevention of atherosclerosis and ischemic conditions. The observed hypolipidemic effect may be because of decreased cholesterogenesis and fatty acid synthesis. Significant lowering of total cholesterol and raise in HDL cholesterol is a very desirable biochemical state for prevention of atherosclerosis and ischemic condition [15].

Such a phenomenon, its related species *Costus speciosus* has antidiabetic as well as multipurpose medicinal activity. [16], investigated the possible protective effects of *Costus speciosus* (Koenig) Sm. (C. speciosus) rhizome extracts on biochemical parameters in streptozotocin (STZ)-induced male diabetic Wistar rats. STZ treatment (50 mg/kg, i.p.) caused a hyperglycemic state that led to various physiologic and biochemical alterations. Hexane, ethyl acetate, and methanol crude extracts administered at the dose of 250 mg/kg, 300 mg/kg, and 400 mg/kg, respectively, for 60 days to STZ-induced hypoglycemic and normal glycemic rats. The plasma glucose concentration was significantly (p <0.05) decreased by all three extracts compared with controls. In addition, oral administration of hexane extract significantly decreased glycosylated hemoglobin (HbA1), serum total cholesterol, and triglyceride levels, urea, uric acid, and creatinine and at the same time markedly increased plasma insulin, tissue glycogen, serum protein, and high-density lipoprotein (HDL) cholesterol levels. The hexane crude extract also restored the altered plasma enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and acid phosphatase (ACP) levels to near normal. Glibenclamide used as a reference drug (5mg/kg body weight) also produced a significant reduction in the blood glucose concentration in STZ-induced diabetic rats. In summary, the hexane crude extract was found to be more active in comparison with ethyl acetate and methanol extracts. Thus study shows that the *C. igneus* hexane extract has anti-hyperglycemic and hypolipidemic activity, is able to ameliorate the diabetic state, and is probably a source of hypoglycemic compounds.

The hepatoprotective activity of the ethanolic extract of the rhizomes of *Costus speciosus* (Koenig) Sm. is studied on carbon tetrachloride treated rats. The extract registered a significant fall in the levels of serum glutamylloxalacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaline phosphatase (ALXP), serum bilirubin (SBLN) and liver inflammation supported by histopathological studies on liver, thus exhibited a significant hepatoprotective activity.

In phytochemical analysis of its related species *Costus speciosus*, Carbohydrates were identified by Molisch’s test, proteins were identified by ninhydrin test, triterpenoids and steroids were identified by Libermann-Burchard test, alkaloids were identified by Dragendorf’s test, tannins were identified by Braemmer’s test, glycosides were identified by Legal’s test, saponins were identified by haemolysis test, flavonoids were identified by lead acetate test, and fixed oils were identified by the presence of oil stains on the filter paper. Plant active constituents responsible for antidiabetic properties were isolated by thin layer chromatography (TLC). Acid hydrolysis was carried out on vacuum-dried concentrated methanol extract of *C. spiralis* to liberate aglycones, if any glycosides were present. The concentrates were spotted on activated TLC plates of silica gel GF 254 (60-120 mesh) of 0.5 mm-thickness coating. The plates (20cm x 5cm) were developed with solvent system n-butanol-2 M ammonium hydroxide (1:1) to elute α- and β-amyrin [17-18].

The developed plates were air-dried and detected by Carr-Price reagent, i.e., 20% antimony chloride in chloroform was sprayed and dried in a chromatographic oven at 105°C for 30mm. The resolution bands were obtained and Retardation factor (Rf) values calculated The β-amyrin found in the concentrate was identified by comparing the Rf value with earlier-reported study [19].The fractions of similar TLC patterns were combined, concentrated and rechromatographed repeatedly over silica gel GF 254 (100-200 mesh) columns of 60 cm x 3cm to isolate active compound and confirmed by qualitative chemical analysis [20]. Hence, the sequential extracts of *Costus igneus* were subjected to qualitative phytochemical screening and GC-MS for the presence of different chemical groups of extract tested, methanol extract was found to contain the highest number of phytochemicals.
(unpublished data) such as carbohydrates, triterpenoids, proteins, alkaloids, tannins, saponins, and flavonoids for anti diabetic activity.

During diabetes the excess glucose present in blood reacts with haemoglobin to form glycosylated haemoglobin. Therefore, the total haemoglobin level is decreased in STZ diabetic rats. So the total haemoglobin level is lowered in alloxan diabetic rats. Administration of C. igneus reversed the total haemoglobin levels in STZ diabetic rats. The present study suggests that the Costus igneus leaves extracts had synergetic hypoglycemic effect revealed by decreased serum lipid levels, restored hemoglobin and therefore attribute to therapeutic value of the C. igneus extracts of leaves to combat the diabetic condition in rats. Among the two doses, 300mg/kg of C. igneus leaves extract possess potential antidiabetic activity. The potential antidiabetic activity of C. igneus leaves may be due to the phytochemicals flavonoids, terpenoids etc. present in C. igneus leaves. Hence, it might help in preventing diabetic complications and serves as a good adjuvant in the present armamentarium of anti-diabetic drugs.

REFERENCES